TOMATO POMACE KETCHUP: PHYSICOCHEMICAL, MICROBIOLOGICAL, AND SENSORY CHARACTERISTICS
Abstract and keywords
Abstract (English):
Tomato (Solanum lycopersicum L.) is one of the most important crops that is extensively used in the food processing industry. During tomato processing, abundant by-products such as skins, pulps, seeds, and waste are generated and cause environmental burdens. To solve this problem, tomato pomace was subsequently used as a material for making tomato sauce. However, it is essential that the production of tomato ketchup meets the required standards. Therefore, it is important to analyze the physicochemical and sensory characteristics of the product. We aimed to study the effect of corn starch addition on the physicochemical and sensory properties of tomato ketchup made from tomato waste and to assess the acceptability of tomato sauce formulated with different concentrations of corn starch. Tomato ketchup was cooked at 90°C for 15 min and then hot-filled into a sterile glass bottle. It was then analyzed for physical properties (color, viscosity, and total dissolved solids), chemical properties (pH, titratable acidity, moisture content), microbiological quality (total bacteria, mold, and yeast), and sensory acceptance. The results showed that corn starch influenced the color characteristics of the tomato sauce. Adding more than 4% of corn starch increased the viscosity and total solids content significantly (p < 0.05). Also, corn starch addition decreased the water content and acidity, as well as increased the pH of the tomato sauce. Microbiological analysis showed no growth of bacteria, mold, or yeast in any of the test samples. According to sensory analysis, the tomato sauce with 1% of corn starch had the highest acceptance, while higher concentrations of corn starch decreased the texture acceptance. Our findings may indicate that, with proper formulation, tomato by-products can be used as raw materials to develop sustainable alternative value-added products that consumers accept organoleptically. Further investigations can be conducted in the pilot-scale studies to enhance the feasibility of tomato pomace ketchup as a commercial product.

Keywords:
Solanum lycopersicum L., corn starch, ketchup, tomato waste, quality, safety
Text
Publication text (PDF): Read Download
References

1. Kumar M, Tomar M, Bhuyan DJ, Punia S, Grasso S, Sá AGA, et al. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomedicine and Pharmacotherapy. 2021;142. https://doi.org/10.1016/j.biopha.2021.112018

2. Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, et al. Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods. 2022;11(16). https://doi.org/10.3390/foods11162402

3. Bot F, Calligaris S, Cortella G, Nocera F, Peressini D, Anese M. Effect of high pressure homogenization and high power ultrasound on some physical properties of tomato juices with different concentration levels. Journal of Food Engineering. 2017;213:10-17. https://doi.org/10.1016/j.jfoodeng.2017.04.027

4. Dai T, McClements DJ, Niu X, Guo X, Sun J, He X, et al. Whole tomato juice produced by a novel industrial-scale microfluidizer: Effect on physical properties and in vitro lycopene bioaccessibility. Food Research International. 2022;159. https://doi.org/10.1016/j.foodres.2022.111608

5. Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, et al. Lycopene: Food sources, biological activities, and human health benefits. Oxidative Medicine and Cellular Longevity. 2021;2021. https://doi.org/10.1155/2021/2713511

6. Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, et al. Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chemistry. 2021;343. https://doi.org/10.1016/j.foodchem.2020.128396

7. Zhang W, Yu Y, Xie F, Gu X, Wu J, Wang Z. High pressure homogenization versus ultrasound treatment of tomato juice: Effects on stability and in vitro bioaccessibility of carotenoids. LWT. 2019;116. https://doi.org/10.1016/j.lwt.2019.108597

8. Mannino F, Pallio G, Altavilla D, Squadrito F, Vermiglio G, Bitto A, et al. Atherosclerosis plaque reduction by lycopene is mediated by increased energy expenditure through AMPK and PPARα in ApoE KO mice fed with a high fat diet. Biomolecules. 2022;12(7). https://doi.org/10.3390/biom12070973

9. Cámara M, Fernández-Ruiz V, Sánchez-Mata M-C, Cámara RM, Domínguez L, Sesso HD. Scientific evidence of the beneficial effects of tomato products on cardiovascular disease and platelet aggregation. Frontier in Nutrition. 2022;9. https://doi.org/10.3389/fnut.2022.849841

10. Puah B-P, Jalil J, Attiq A, Kamisah Y. New insights into molecular mechanism behind anti-cancer activities of lycopene. Molecules. 2021;26(13). https://doi.org/10.3390/molecules26133888

11. Méndez-Carmona JY, Ascacio-Valdes JA, Alvarez-Perez OB, Hernández-Almanza AY, Ramírez-Guzman N, Sepúlveda L, et al. Tomato waste as a bioresource for lycopene extraction using emerging technologies. Food Bioscience. 2022;49. https://doi.org/10.1016/j.fbio.2022.101966

12. Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of tomato waste as a source of carotenoids. Molecules. 2021;26(16). https://doi.org/10.3390/molecules26165062

13. Sibomana MS, Workneh TS, Audain K. A review of postharvest handling and losses in the fresh tomato supply chain: A focus on Sub-Saharan Africa. Food Security. 2016;8:389-404. https://doi.org/10.1007/s12571-016-0562-1

14. Santiago-Ramos R, Silva CLM, Ramos IN. Modelling and optimization of the processing of a healthy snack bar made of grape and tomato pomaces. Foods. 2022;11(17). https://doi.org/10.3390/foods11172676

15. Solaberrieta I, Mellinas AC, Espagnol J, Hamzaoui M, Jiménez A, Garrigós MC. Valorization of tomato seed by-products as a source of fatty acids and bioactive compounds by using advanced extraction techniques. Foods. 2022;11(16). https://doi.org/10.3390/foods11162408

16. Oboulbiga EB, Parkouda C, Savadogo B, Guissou AWDB, Traore K, Traore AS, et al. Changes in physicochemical properties and bioactive compounds of tomato pulp submitted to different processing techniques. African Journal of Food Science. 2020;14(10):330-335. https://doi.org/10.5897/AJFS2020.1998

17. Silva YPA, Borba BC, Pereira VA, Reis MG, Caliari M, Brooks MS-L, et al. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. International Journal of Food Sciences and Nutrition. 2019;70(2):150-160. https://doi.org/10.1080/09637486.2018.1489530

18. Crops and livestock products [Internet]. [cited 2023 Jan 10]. Available from: https://www.fao.org/faostat/en/#data/QCL

19. Laranjeira T, Costa A, Faria-Silva C, Ribeiro D, de Oliveira JMPF, Simões S, et al. Sustainable valorization of tomato by-products to obtain bioactive compounds: Their potential in inflammation and cancer management. Molecules. 2022;27(5). https://doi.org/10.3390%2Fmolecules27051701

20. Torbica A, Belović M, Mastilović J, Kevrešan Ž, Pestorić M, Škrobot D, et al. Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace. Food and Bioproducts Processing. 2016;98:299-309. https://doi.org/10.1016/j.fbp.2016.02.007

21. Belović M, Torbica A, Pajić-Lijaković I, Tomić J, Lončarević I, Petrović J. Tomato pomace powder as a raw material for ketchup production. Food Bioscience. 2018;26:193-199. https://doi.org/10.1016/j.fbio.2018.10.013

22. Al-Muhtaseb AH, Al-Harahsheh M, Hararah M, Magee TRA. Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Industrial Crops and Products. 2010;31(1):171-177. https://doi.org/10.1016/j.indcrop.2009.10.002

23. Herlina H, Lindriati T, Prahasbynar P. The use of crude extract water soluble polysaccharide from durian (Durio zibethinus Muur.) seeds in tomato sauce processing. agriTECH. 2016;36(3):286-293. (In Indonesian). https://doi.org/10.22146/agritech.16597

24. Himashree P, Sengar AS, Sunil CK. Food thickening agents: Sources, chemistry, properties and applications - A review. International Journal of Gastronomy and Food Science. 2022;27. https://doi.org/10.1016/j.ijgfs.2022.100468

25. Ali TM, Hasnain A. Physicochemical, morphological, thermal, pasting, and textural properties of starch acetates. Food Reviews International. 2016;32(2):161-180. https://doi.org/10.1080/87559129.2015.1057842

26. Siti N, Misra S, Baruah D, Badwaik LS, Deka SC. Physicochemical properties of taro and maize starch and their effect on texture, colour and sensory quality of tomato ketchup. Starch - Stärke. 2014;66(3-4):294-302. https://doi.org/10.1002/star.201300120

27. Dzhivoderova-Zarcheva M, Nikovska K, Dimova K. Rheological and structural properties of tomato ketchup as affected by the addition of native and modified starches. Bulgarian Journal of Agricultural Science. 2021;27(1):220-226.

28. Pathare PB, Opara UL, Al-Said FA-J. Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology. 2013;6:36-60. https://doi.org/10.1007/s11947-012-0867-9

29. Vigneshwaran G, More PR, Arya SS. Non-thermal hydrodynamic cavitation processing of tomato juice for physicochemical, bioactive, and enzyme stability: Effect of process conditions, kinetics, and shelf-life extension. Current Research in Food Science. 2022;5:313-324. https://doi.org/10.1016/j.crfs.2022.01.025

30. Sridhar K, Makroo HA, Srivastava B. Effect of cold- and hot-break heat treatments on the physicochemical characteristics of currant tomato (Solanum pimpinellifolium) pulp and paste. Foods. 2022;11(12). https://doi.org/10.3390/foods11121730

31. Tigist M, Workneh TS, Woldetsadik K. Effects of variety on the quality of tomato stored under ambient conditions. Journal of Food Science and Technology. 2013;50(3):477-486. https://doi.org/10.1007/s13197-011-0378-0

32. Rosalinda RAN, Suryati, Masrulita, Sylvia N, Meriatna. Utilization of star fruit (Averhoa blimbi L.) as a preservative in making chili sauce. Chemical Engineering Journal Storage. 2021;1(2):24-34. (In Indonesian). https://doi.org/10.29103/cejs.v1i2.5054

33. Tournas V, Stack ME, Mislivec PB, Koch HA, Bandler R. Yeasts, molds, and mycotoxins [Internet]. [cited 2023 Jan 15]. Available from: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-18-yeasts-molds-and-mycotoxins

34. Maturin L, Peeler JT. Aerobic plate count [Internet]. [cited 2023 Jan 15]. Available from: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count

35. Meilgaard MC, Civille GV, Carr BT. Sensory evaluation techniques, 5th Ed. Boca Raton: CRC Press; 2006. 630 p. https://doi.org/10.1201/b19493

36. Asasia PAA, Yuwono SS. Effect of corn starch and citric acid concentration level on physico-chemical and organoleptic properties of rose jam. Jurnal Pangan dan Agroindustri. 2018;6(1):64-74. (In Indonesian). https://doi.org/10.21776/ub.jpa.2018.006.01.8

37. Yahia EM, Brecht JK. Tomatoes. In: Rees D, Farrell G, Orchard J, editors. Crop post-harvest: Science and technology: Perishables. Blackwell Publishing; 2012. pp. 5-23. https://doi.org/10.1002/9781444354652.ch2

38. Hussain N, Weng CH, Munawar N. Effects of different concentrations of pineapple core extract and maceration process on free-range chicken meat quality. Italian Journal of Food Science. 2022;34(1):124-131. https://doi.org/10.15586/ijfs.v34i1.2086

39. de Castro DS, dos Santos Moreira I, de Sousa FC, da Silva WP, Gomes JP, de Melo Queiroz AJ, et al. Physical, chemical and rheological properties of pitomba (Talisia esculenta) seed starch and its application as a thickener and stabilizer in ketchup. Australian Journal of Crop Science. 2021;15(6):842-849. https://doi.org/10.21475/ajcs.21.15.06.p2981

40. Sharoba AM, Senge B, El-Mansy HA, Bahlol HE, Blochwitz R. Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups. European Food Research and Technology. 2005;220:142-151. https://doi.org/10.1007/s00217-004-0981-7

41. Pahruzi A, Ninsix R. Study of the addition of cornstarch as a thickening agent on the characteristics of moli banana sauce. Jurnal Teknologi Pertanian. 2016;5(1):8-14. (In Indonesian). https://doi.org/10.32520/jtp.v5i1.85

42. Khayrul Alam M, Ahmed M, Sorifa Akter M, Islam N, Eun J-B. Effect of carboxymethylcellulose and starch as thickening agents on the quality of tomato ketchup. Pakistan Journal of Nutrition. 2009;8(8):1144-1149. https://doi.org/10.3923/pjn.2009.1144.1149

43. Pour FH, Makkawi YT. A review of post-consumption food waste management and its potentials for biofuel production. Energy Reports. 2021;7:7759-7784. https://doi.org/10.1016/j.egyr.2021.10.119

44. Raits E, Pinte L, Kirse-Ozolina A, Muizniece-Brasava S. Effect of hot-fill processing at reduced temperatures on tomato sauce microbiological stability in plastic packaging. 20th International Scientific Conference Engineering for Rural Development; 2021; Jelgava. Jelgava: Latvia University of Life Sciences and Technologies; 2021. p. 1843-1849. https://doi.org/10.22616/ERDev.2021.20.TF405

45. Singh S, Singh AK, Rai A. Effect of different thickeners on quality assurance and consumer preferences in tomato ketchup. Indian Journal of Agricultural Sciences. 2014;84(8):1014-1017. https://doi.org/10.56093/ijas.v84i8.43141


Login or Create
* Forgot password?