с 01.01.2009 по 01.01.2024
Барнаул, Россия
Алтайский край, Россия
Барнаул, Россия
Барнаул, Россия
Панты – неокостеневшие рога оленей, снятые в период роста, распространенное сырье для изготовления биологически активных добавок с доказанным профилактическим и лечебным действием. Для расширения возможности применения пантовой продукции в составе функционального питания предлагается использование технологии разделения сырого панта на фракции. Цель исследования – оценить биохимический состав субстанций из пантов марала (Cervus elaphus sibiricus), полученных путем фракционирования. Материалом исследования послужили сырые панты марала. Сырье фракционировали посредством перколяции, высокотемпературного гидролиза и субкритической экстракции. Все пробы высушивали до влажности 5–10 %. В представленных образцах определяли массовую долю органических и минеральных веществ, массовую концентрацию макро- и микроэлементов, аминокислот, жирнокислотный состав, молекулярно-массовое распределение фракций пептидов. В кровяной и хрящевой субстанциях преобладала белковая фракция (74,29–80,59 %) высокой биологической ценности с показателями аминокислотного скора по треонину, фенилаланину, изолейцину и триптофану от 97 до 227 %. Анализ пептидных фракций показал наличие низкомолекулярных пептидов массой < 2,9 кДа с преобладающим их количеством в составе хрящевой субстанции. По минеральным компонентам показано преобладание кальция (16590,00 мг/100 г), натрия (799,10 мг/100 г), магния (319,80 мг/100 г) и цинка (6,40 мг/100 г) в составе субстанции из крови и лимфы; калия (408,60 мг/100 г) и железа (54,30 мг/100 г) в хрящевой фракции. Основу минеральной фракции составляет фосфор в количестве 14000,00 мг/100 г. На основании данных биохимического состава субстанций из пантов марала (Cervus elaphus sibiricus), полученных путем фракционирования, при сравнительной оценке с исходным сырьем показана высокая биологическая ценность, что позволяет установить целесообразность их включения в функциональные продукты питания людей.
Марал, субстанция, фракционирование, функциональный продукт, панты, биохимический состав, пептиды, аминокислоты
1. Soetedjo NNM. The role of nutrition in various endocrine and metabolic diseases. Clinical Nutrition Open Science. 2025;62:164–188. https://doi.org/10.1016/j.nutos.2025.05.015
2. Lee CD, Hardin CC, Longo DL, Ingelfinger JR. Nutrition in medicine – A new review article series. The New England Journal of Medicine. 2024;390(14):1324–1325. https://doi.org/10.1056/NEJMe2313282
3. Lozada-Martinez ID, Vindas-Meza L, Castelblanco-Toro S, Salazar-Uribe JC, Anaya J. The impact of nutritional status on centenarians physical, mental, and functional health. Clinical Nutrition Open Science. 2025;60:10–20. https://doi.org/10.1016/j.nutos.2025.01.010
4. Feng L, Chu Z, Quan X, Zhang Y, Yuan W, et al. Malnutrition is positively associated with cognitive decline in centenarians and oldest-old adults: A cross-sectional study. eClinicalMedicine. 2022;47:101336. https://doi.org/10.1016/j.eclinm.2022.101336
5. Просеков А. Ю., Веснина А. Д., Любимова Н. А., Чекушкина Д. Ю., Михайлова Е. С. Потребительская геномика: роль в персонализации питания. Техника и технология пищевых производств. 2025. Т. 55. № 2. С. 400–415. https://doi.org/10.21603/2074-9414-2025-2-2582
6. Yiğit A, Bielska P, Cais-Sokolińska D, Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. Journal of the American Nutrition Association. 2023;42(8):758–768. https://doi.org/10.1080/27697061.2023.2169208
7. Gupta A, Sanwal N, Bareen MA, Barua S, Sharma N, et al. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Research International. 2023;170:113046. https://doi.org/10.1016/j.foodres.2023.113046
8. Berry CW, Murray B, Kenney WL. Scientific basis for a milk permeate-based sports drink – A critical review. International Dairy Journal. 2022;127:105296. https://doi.org/10.1016/j.idairyj.2021.105296
9. Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. Nutrients. 2018;10(11):1738. https://doi.org/10.3390/NU10111738
10. Wang M, Zhou Z, Wei Y, He R, Yang J, et al. Dissecting the mechanisms of velvet antler extract against diabetic osteoporosis via network pharmacology and proteomics. Journal of Ethnopharmacology. 2025;341:119334. https://doi.org/10.1016/j.jep.2025.119334
11. Ding C, Hao M, Ma S, Zhang Y, Yang J, et al. Identification of peptides with antioxidant, anti-lipoxygenase, anti-xanthine oxidase and anti-tyrosinase activities from velvet antler blood. LWT. 2022;168:113889. https://doi.org/10.1016/j.lwt.2022.113889
12. Cao T-Q, An H-X, Ma R-J, Dai K-Y, Ji H-Y, et al. Structural characteristics of a low molecular weight velvet antler protein and the anti-tumor activity on S180 tumor-bearing mice. Bioorganic Chemistry. 2023;131:106304. https://doi.org/10.1016/j.bioorg.2022.106304
13. Сатаева Ж. И., Жетимкаринов Е. Д. Напитки профилактического назначения на основе порошков панты оленей. Norwegian Journal of development of the International Science. 2024. № 140. С. 4–8. https://doi.org/10.5281/zenodo.13768163
14. Казанцев Д. А., Растопшина Л. В. Характеристика стада маралов алтае-саянской породы в СПК ПЗ «Абайский». Вестник Алтайского государственного аграрного университета. 2021. № 5. С. 88–92.
15. Sui Z, Sun H, Weng Y, Zhang X, Sun M, et al. Quantitative proteomics analysis of deer antlerogenic periosteal cells reveals potential bioactive factors in velvet antlers. Journal of Chromatography A. 2020;1609:460496. https://doi.org/10.1016/j.chroma.2019.460496
16. Chen Y, Zhang Z, Jin W, Li Z, Bao C, et al. Integrative analyses of antler cartilage transcriptome and proteome of gansu red deer (Cervus elaphus kansuensis) at different growth stages. Animals. 2022;12(7):934. https://doi.org/10.3390/ani12070934
17. Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. Journal of orthopaedic Surgary and Research. 2021;16:8. https://doi.org/10.1186/s13018-020-02148-w
18. Коростелева Н. И., Кондрашкова И. С., Рудишина Н. М., Камардина И. А. Биометрия в животноводстве. Барнаул: АГАУ; 2009. 210 с.
19. Singh RR, Khanna PP, Singh AK, Goyal SP. Elemental characterization of antlers of variours deer species using X-Ray fluorescence (XRF): A tool for forensic examination. Forensic Science International. 2022;332:111172. https://doi.org/10.1016/j.forsciint.2022.111172
20. Orassay A, Sadvokassova D, Berdigaliyev A, Sagintayev A, Myrzagali S, et al. Deer antler extract: Pharmacology, rehabilitation and sports medicine applications. Pharmacologycal Research – Modern Chinese Medicine. 2024;10:100316. https://doi.org/10.1016/j.prmcm.2023.100316
21. Jeon B, Kim S, Lee S, Park P, Sung S, et al. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mammalian Biology. 2009;74(5):374–380. https://doi.org/10.1016/j.mambio.2008.07.005
22. Jang DW, Ameer K, Oh JH, Park MK. Optimization and pretreatment for hot water extraction of Korean deer (Cervus canadensis erxleben) velvet antlers. Journal of microbiology and biotechnology. 2020;30(8):1116–1123. https://doi.org/10.4014/JMB.2004.04009
23. Shi M, Li T, Zhao Y, He Z, Zong Y, et al. Comparative studies on the chemical composition and pharmacological effects of vinegar-processed antler glue modified from Lei Gong Pao Zhi Lun and traditional water-processed antler glue. Journal of Ethnopharmacology. 2024;321:117508. https://doi.org/10.1016/j.jep.2023.117508
24. Widyowati R, Suciati S, Haryadi DM, Chang H-I, Suryawan IPGN, et al. The effect of Rusa unicolor antler deer extracts from East Kalimantan in bone turnover cell models. Turkish Journal of Pharmaceutical Sciences. 2020;17(4):440–445. https://doi.org/10.4274/tjps.galenos.2019.57805
25. Sui Z, Zhang L, Huo Y, Yukui Z. Bioactive components of velvet antlers and their pharmacological properties. Journal of Pharmaceutical and Biomedical Analysis. 2014;87:229–240. https://doi.org/10.1016/j.jpba.2013.07.044
26. López-Pedrouso M, Lorenzo JM, Landete-Castillejos T, Chonco L, Pérez-Barbería FJ, et al. Quantitative proteomic analysis of deer antler from two regenerating and mineralizing sections. Biology. 2021;10(7):679. https://doi.org/10.3390/biology10070679
27. Кротова М. Г., Гришаева И. Н. Коллаген, гидролизованный из сырья маралов: технология получения и биохимический состав. Техника и технология пищевых производств. 2024. Т. 54. № 4. С. 884–896. [Krotova MG, Grishaeva IN. Collagen hydrolysed from maral raw material: Production technology and biochemical composition. Food Processing: Techniques and Technology. 2024;54(4):884–896. (In Russ.)] https://doi.org /10.21603/2074-9414-2024-4-2549
28. Guo H, Zhang Q, Xin L, Zhang H, Wang S. Dietary hydroxyproline promotes collagen deposition in swim bladder through regulating biosynthesis of amino acid: In-vitro and in-vivo investigations in Nibea coibor. Aquaculture. 2023;573:739614. https://doi.org/10.1016/j.aquaculture.2023.739614
29. Krishnan A, Raghu S, Eswaramoorthy R, Perumal G. Biodegradable glutamic acid loaded polycaprolactone nanofibrous scaffold for controlled dentin mineralization. Journal of Drug Delivery Science and Technology. 2025;104:106546. https://doi.org/10.1016/j.jddst.2024.106546
30. Lioi M, Tengattini S, Gotti R, Bagatin F, Galliani S. Chromatographic separation by RPLC-ESI-MS of all hydroxyproline isomers for the characterization of collagens from different sources. Journal of Chromatography A. 2024;1720:464771. https://doi.org/10.1016/j.chroma.2024.464771
31. Rucklidge GJ, Milne G, Bos KJ, Farquharson C, Robins SP. Deer antler does not represent a typical endochondral growth system: Immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comparative Biochemistry and Physiology part B: Biochemistry and Molecular Biology. 1997;118(2):303–308. https://doi.org/10.1016/S0305-0491(97)00171-5
32. Гордынец С. А., Мадзиевская Т. А., Курченко В. П. Новые тенденции в создании пищевых ингредиентов. Материалы семинара с международным участием. Минск: Издательский центр БГУ; 2021. 106 с.
33. Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. WHO Technical Report Series. 2007;(935):1–265.
34. Яременко О. Б., Анохина Г. А., Бурьянов А. А. Сустав. Хрящ. Коллаген. Травма. 2020. Т. 21. № 4. С. 6–12. https://doi.org/10.22141/1608-1706.4.21.2020.212531
35. Lin L, Li C, Zhang T, Xia C, Bai Q, et al. An in silico scheme for optimizing the enzymatic acquisition of natural biologically active peptides based on machine learning and virtual digestion. Analytica Chimica Acta. 2024;1298:342419. https://doi.org/10.1016/j.aca.2024.342419
36. Zamudio FV, Hidalgo-Figueroa SN, Ortíz Andrade RR, Hernández Álvarez AJ, Segura Campos MR. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chemistry. 022;394:133479. https://doi.org/10.1016/j.foodchem.2022.133479
37. Chirinos R, Escobar-Mendoza N, Figueroa-Merma A, de Oliveira TV, Guzmán F, et al. Evaluation of the antihypertensive and antidiabetic potential of peptides from the globulin fraction of quinoa (Chenopodium quinoa) by an in silico and in vitro approach. International Journal of Food Science and Technology. 2023;58(8):4386–4396. https://doi.org/10.1111/ijfs.16544
38. Pektaş AN, Korkmaz EM. Novel antimicrobial defensin peptides from different coleopteran insects (Coleoptera: Insecta): Identification, characterisation and antimicrobial properties. Journal of Asian Natural Products Research. 2025;27(8):1146–1160. https://doi.org/10.1080/10286020.2024.2448011
39. Ghafoor H, Asim MN, Ibrahim MA, Ahmed S, Dengel A. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Computers in Biology and Medicine. 2024;176:108538. https://doi.org/10.1016/j.compbiomed.2024.108538
40. Hajigha MN, Hajikhani B, Vaezjalali M, Kafil HS, Anari RK, et al. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon. 2024;10(22):e40121. https://doi.org/10.1016/j.heliyon.2024.e40121
41. Смирнова А. В., Тихонов С. А. Идентификация и предиктивный анализ аминокислотных паттернов, обуславливающих потенциальную антигиперурикемическую активность пептидов. Техника и технология пищевых производств. 2024. Т. 54. № 4. С. 687–700. https://doi.org/10.21603/2074-9414-2024-4-2536
42. Mottola S, Del Bene A, Mazzarella V, Cutolo R, Boccino I, et al. Sustainable ultrasound-assisted solid-phase peptide synthesis (SUS-SPPS): Less waste, more efficiency. Ultrasonics Sonochemistry. 2025;114:107257. https://doi.org/10.1016/j.Ultsonch.2025.107257
43. Kohl J, Jerger S, König D, Centner C. Chapter 21 – Applications in nutrition: Sport nutrition. In: Toldrá F, Wu J, editors. Biologically Active Peptides. NY, Oxford: Academic Press; 2021. pp. 525–550. https://doi.org/10.1016/B978-0-12-821389-6.00024-8
44. Chandimali N, Bak S-G, Park EH, Lim H-J, Won Y-S, et al. Bioactive peptides derived from duck products and byproducts as functional food ingredients. Journal of Functional Foods. 2024;113:105953. https://doi.org/10.1016/j.jff.2023.105953
45. Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Computers in Biology and Medicine. 2025;188:109821. https://doi.org/10.1016/j.compbiomed.2025.109821
46. Bao X, Wu J. Impact of food-derived bioactive peptides on gut function and health. Food Research International. 2021;147:110485. https://doi.org/10.1016/j.foodres.2021.110485
47. Chen D, Shu Y, Chen J, Cao X. Preparation and in vitro bioactive evaluation of cashew-nut proteins hydrolysate as a potential source of anti-allergy peptides. Journal of Food Science & Technology. 2021;58:3780–3789. https://doi.org/10.1007/s13197-020-04838-z
48. Suttie JM, Gluckman PD, Butler JH, Fennessy PF, Corson ID, et al. Insum-like growth factor 1 (IGF-1) antlerstimulating holmone? Endocrinology. 1985;116(2):846–848. https://doi.org/10.1210/endo-116-2-846
49. Zhao L, Wang X, Zhang X, Xie Q. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). Journal of Food and Drug Analisis. 2016;24(2):376–384. https://doi.org/10.1016/j.jfda.2015.10.003
50. Ma S, Ding Q, Xia G, Li A, Li J, et al. Multifunctional biomaterial hydrogel loaded with antler blood peptide effectively promotes wound repair. Biomedicine & Pharmacotherapy. 2024;170:116076. https://doi.org/10.1016/j.biopha.2023.116076
51. Hao M, Peng X, Sun S, Ding C, Liu W, et al. Chitosan/sodium alginate/velvet antler blood peptides hydrogel promoted wound healing by regulating PI3K/AKT/mTOR and SIRT1/NF-kB pathways. Frontiers in Pharmacology. 2022;13:913408. https://doi.org/10.3389/fphar.2022.913408
52. Gómez JA, Ceacero F, Landete-Castillejos T, Gaspar-López E, García AJ, et al. Factors affecting antler investment in Iberian red deer. Animal Production Science. 2012;52:867–873. https://doi.org/10.1071/AN11316
53. Shi H, Yu T, Li Z, Lu W, Zhang M, et al. Bone regeneration strategy inspired by the study of calcification behavior in deer antler. Materials Science and Engineering: C. 2015;57:67–76. https://doi.org/10.1016/j.msec.2015.07.043
54. Hamid HA, Khairul Anuar MZA, Zulkifli FH. Preparation and characterization of deer velvet antler/polyvinyl alcohol (DVA/PVA) scaffold for bone tissue engineering. Materialstoday: Proceedings. 2022;51(Part 2):1332–1337. https://doi.org/10.1016/j.matpr.2021.11.377
55. Sawant RC, Somkuwar SR, Luo S-Y, Kamble RB, Panhekar DY, et al. Chapter 4 – Novel extraction and characterization methods for phytochemicals. In: Pati S, Sarkar T, Lahiri D, editors. Recent Frontiers of Phytochemicals. Netherlands: Elsevier; 2023. pp. 63–84. https://doi.org/10.1016/B978-0-443-19143-5.00035-9
56. Chonco L, Landete-Castillejos T, Serrano-Heras G, Pérez Serrano M, Pérez-Barbería FJ, et al. Anti-tumour activity of deer growing antlers and its potential applications in the treatment of malignant gliomas. Scientific Reports. 2021;11:42. https://doi.org/10.1038/s41598-020-79779-w
57. Loftus LV, Rolle LTA, Wang B, Pienta KJ, Amend SR. Dysregulation of labile iron predisposes chemotherapy resistant cancer cells to ferroptosis. International Journal of Molecular Sciences. 2025;26(9):4193. https://doi.org/10.3390/ijms26094193
58. Kim C-T, Gujral N, Ganguly A, Suh J-W, Sunwoo HH. Chondroitin sulphate extracted fromantler cartilage using high hydrostatic pressure and enzymatic hydrolysis. Biotechnology reports. 2014;4:14–20. https://doi.org/10.1016/j.btre.2014.07.004
59. Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, et al. Health promoting properties of bee royal jelly: Food of the queens. Nutrients. 2021;13(2):543. https://doi.org/10.3390/nu13020543




