пос. Родники, Россия
пос. Родники, Россия
Развитие методов генного и геномного редактирования повышает актуальность прогноза и уменьшения вероятности нецелевых, плейотропных последствий. Одним из таких направлений может быть оценка структурно-функциональных особенностей геномных мишеней редактирования по наиболее полиморфным геномным элементам, таким как транспозоны. Цель исследования – выявить распределения транспозонов в генах, наиболее часто выбираемых в качестве мишеней генного редактирования, и на их флангах у разных видов млекопитающих. Исследование выполнялось на геномных последовательностях человека (Homo sapiens), крупного рогатого скота (Bos taurus), домашнего кролика (Oryctolagus cuniculus) и домовой мыши (Mus musculus) белок-кодирующих генов миостатина (mstn), меланофилина (mlph), рецептора лептина (lepr), белка ремоделинга хроматина (хромосома Х, atrx), генов эволюционно консервативной петли хроматина (фактор регуляции транскрипции – auts2, N-ацетилгалактозаминилтрансфераза – galnt17, кальций связывающий белок 1 – caln1), а также их флангов. Распределение транспозонов оценивали с использованием программы RepeatMasker, статистическую обработку выполняли с применением программы Jamovi. Рассматривались следующие генные и геномные особенности: частота встречаемости разных типов диспергированных повторов, доминирующих у предковых видов млекопитающих и затем вытесненных молодыми вариантами; зависимость частоты встречаемости разных повторов от локализации в аутосомах и хромосоме Х, функциональной принадлежности групп генов, их локализации в общей и разных хромосомах, перекрывания генов. Выявлены отличия по частотам встречаемости «древних» и «молодых» транспозонов между человеком, крупным рогатым скотом и грызунами, по-видимому, связанные с разной скоростью смены поколений; обнаружены ассоциации между функциями белков и консервативностью генетического сцепления между кодирующими их генами; генетически сцепленные гены у разных видов отличались по обогащенности «древними» транспозонами, что, предположительно, ассоциировано с видоспецифичными различиями в защищенности от транспозиций соответствующих геномных районов. Полученные данные о видо- и ген-специфичных особенностях распределения транспозонов необходимо учитывать в целях предупреждения нежелательных эффектов редактирования соответствующих геномных районов.
Генное редактирование, генетическое сцепление, хроматиновая петля, эволюционная консервативность, «древние» и «молодые» транспозоны, человек, крупный рогатый скот, домашний кролик, домовая мышь
1. Alariqi M, Ramadan M, Yu L, Hui F, Hussain A, et al. Enhancing specificity, precision, accessibility, flexibility, and safety to overcome traditional CRISPR/Cas editing challenges and shape future innovations. Advanced Science. 2025;12(28):e2416331. https://doi.org/10.1002/advs.202416331
2. Pandey S, Choudhari JK, Tripathi A, Singh A, Antony A, et al. Artificial intelligence-based genome editing in CRISPR/Cas9. Artificial Intelligence (AI) in Cell and Genetic Engineering. 2025;2952:273–282. https://doi.org/10.1007/978-1-0716-4690-8_16
3. Косовский Г. Ю., Скобель О. И., Глазко Т. Т. Потенциальные источники негативных эффектов генного редактирования у животных. Сельскохозяйственная биология. 2024. Т. 59. № 6. С. 1118–1130. https://doi.org/10.15389/agrobiology.2024.6.1118eng
4. Глазко В. И., Косовский Г. Ю., Глазко Т. Т. Геномное редактирование животных сельскохозяйственных видов. Рязань: Book Jet; 2024. 164 c.
5. Kwon D-H, Gim G-M, Yum S-Y, Jang G. Current status and future of gene engineering in livestock. BMB Reports. 2024;57(1):50–59. https://doi.org/10.5483/BMBRep.2023-0208
6. Tahsin A, Tasnim Z, Chowdhury M, Hassin K, Meraz GH, et al. CRISPR-Embedding: CRISPR/Cas9 off-target activity prediction using DNA k-mer embedding. Computational and Structural Biotechnology Reports. 2025;2:100043. https://doi.org/10.1016/j.csbr.2025.100043
7. Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O, et al. The international mouse phenotyping consortium: Comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Research. 2023;51(D1):D1038–D1045. https://doi.org/10.1093/nar/gkac972
8. Buckley RM, Kortschak RD, Adelson DL. Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse. PLOS Computational Biology. 2018;14(4):e1006091. https://doi.org/10.1371/journal.pcbi.1006091
9. Ali A, Han K, Liang P. Role of transposable elements in gene regulation in the human genome. Life. 2021;11(2):118. https://doi.org/10.3390/life11020118
10. Modzelewski AJ, Gan Chong J, Wang T, He L. Mammalian genome innovation through transposon domestication. Nature Cell Biology. 2022;24(9):1332–1340. https://doi.org/10.1038/s41556-022-00970-4
11. Zeng L, Pederson SM, Kortschak RD, Adelson DL. Transposable elements and gene expression during the evolution of amniotes. Mobile DNA. 2018;9:17. https://doi.org/10.1186/s13100-018-0124-5
12. Gebrie A. Transposable elements as essential elements in the control of gene expression. Mobile DNA. 2023;14(1):9. https://doi.org/10.1186/s13100-023-00297-3
13. Monsen Ø, Grønvold L, Datsomor A, Harvey T, Kijas J, et al. The role of transposon activity in shaping cisregulatory element evolution after whole-genome duplication. Genome Research. 2025;35(3):475–488. https://doi.org/10.1101/gr.278931.124
14. Silaeva YY, Safonova PD, Popov DV, Filatov MA, Okulova YuD, et al. Generation of LEPR knockout rabbits with CRISPR/CAS9 system. Doklady Biological Sciences. 2024;518:248–255. https://doi.org/10.1134/S0012496624600234
15. Andrade P, Alves JM, Pereira P, Rubin CJ, Silva E, et al. Selection against domestication alleles in introduced rabbit populations. Nature Ecology & Evolution. 2024;8(8):1543–1555. https://doi.org/10.1038/s41559-024-02443-3
16. Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI, et al. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Research. 2019;29(4):576–589. https://doi.org/10.1101/gr.239863.118
17. Damas J, Corbo M, Kim J, Turner-Maier J, Farré M, et al. Evolution of the ancestral mammalian karyotype and syntenic regions. Proceedings of the National Academy of Sciences. 2022;119(40):e2209139119. https://doi.org/10.1073/pnas.2209139119
18. Li L, Zhang T, Farhab M, Xia XX, Reza AMMT, et al. Comprehensive analysis of circRNAs and lncRNAs involvement in the development of skeletal muscle in myostatin-deficient rabbits. Animal Biotechnology. 2025;36(1):2465624. https://doi.org/10.1080/10495398.2025.2465624
19. Lee J, Kim D-H, Lee K. Research note: Injection of adenoviral CRISPR/Cas9 system targeting melanophilin gene into different sites of embryos induced regional feather color changes in posthatch quail. Poultry Science. 2023;102(11):103087. https://doi.org/10.1016/j.psj.2023.103087
20. Chen CY, Seward CH, Song Y, Inamdar M, Leddy AM, et al. Galnt17 loss-of-function leads to developmental delay and abnormal coordination, activity, and social interactions with cerebellar vermis pathology. Developmental Biology. 2022;490:155–171. https://doi.org/10.1016/j.ydbio.2022.08.002
21. Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, et al. The Dfam database of repetitive DNA families. Nucleic Acids Research. 2016;44(D1):D81–D89. https://doi.org/10.1093/nar/gkv1272
22. Sriwastva MK, Deng ZB, Wang B, Teng Y, Kumar A, et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Reports. 2022;23(3):e53365. https://doi.org/10.15252/embr.202153365
23. Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, et al. COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. The American Journal of Pathology. 2009;174(4):1415–1425. https://doi.org/10.2353/ajpath.2009.080861
24. Wang H, Mizuno K, Takahashi N, Kobayashi E, Shirakawa J, et al. Melanophilin accelerates insulin granule fusion without predocking to the plasma membrane. Diabetes. 2020;69(12):2655–2666. https://doi.org/10.2337/db20-0069
25. Chon NL, Tran S, Miller CS, Lin H, Knight JD. A conserved electrostatic membrane-binding surface in synaptotagminlike proteins revealed using molecular phylogenetic analysis and homology modeling. Protein Science. 2024;33(1):e4850. https://doi.org/10.1002/pro.4850
26. Babina M, Franke K, Bal G. How “neuronal” are human skin mast cells? International Journal of Molecular Sciences. 2022;23(18):10871. https://doi.org/10.3390/ijms231810871
27. Bed’hom B, Vaez M, Coville JL, Gourichon D, Chastel O, et al. The lavender plumage colour in Japanese quail is associated with a complex mutation in the region of MLPH that is related to differences in growth, feed consumption and body temperature. BMC Genomics. 2012;13:442. https://doi.org/10.1186/1471-2164-13-442
28. Ly T, Oh JY, Sivakumar N, Shehata S, La Santa Medina N, et al. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature. 2023;624:130–137. https://doi.org/10.1038/s41586-023-06758-2
29. Beaumont KA, Hamilton NA, Moores MT, Brown DL, Ohbayashi N, et al. The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking. Traffic. 2011;12(5):627–643. https://doi.org/10.1111/j.1600-0854.2011.01172.x
30. Li P, Zhang Q, Tang H. INPP1 up-regulation by miR-27a contributes to the growth, migration and invasion of human cervical cancer. Journal of Cellular and Molecular Medicine. 2019;23(11):7709–7716. https://doi.org/10.1111/jcmm.14644
31. Molloy AM, Pangilinan F, Mills JL, Shane B, O’Neill MB, et al. A common polymorphism in HIBCH influences methylmalonic acid concentrations in blood independently of cobalamin. The American Journal of Human Genetics. 2016;98(5):869–882. https://doi.org/10.1016/j.ajhg.2016.03.005
32. Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biology. 2024;14(10):240094. https://doi.org/10.1098/rsob.240094
33. Grobet L, Martin LJR, Poncelet D, Pirottin D, Brouwers B, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics. 1997;17:71–74. https://doi.org/10.1038/ng0997-71
34. Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research. 1997;7:910–915. https://doi.org/10.1101/gr.7.9.910
35. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLOS Genetics. 2007;3(5):e79. https://doi.org/10.1371/journal.pgen.0030079
36. Boman IA, Våge DI. An insertion in the coding region of the myostatin (MSTN) gene affects carcass conformation and fatness in the Norwegian Spælsau (Ovis aries). BMC Research Notes. 2009;2:98. https://doi.org/10.1186/1756-0500-2-98
37. Sahu AR, Jeichitra V, Rajendran R, Raja A. Novel report on mutation in exon 3 of myostatin (MSTN) gene in Nilagiri sheep: An endangered breed of South India. Tropical Animal Health and Production. 2019;51:1817–1822. https://doi.org/10.1007/s11250-019-01873-7
38. Stinckens A, Luyten T, Bijttebier J, Van den Maagdenberg K, Dieltiens D, et al. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Animal Genetics. 2008;39(6):586–596. https://doi.org/10.1111/j.1365-2052.2008.01774.x
39. Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. The New England Journal of Medicine. 2004;350(26):2682–2688. https://doi.org/10.1056/NEJMoa040933
40. Saunders MA, Good JM, Lawrence EC, Ferrell RE, Li W-H, et al. Human adaptive evolution at myostatin (GDF8), a regulator of muscle growth. The American Journal of Human Genetics. 2006;79(6):1089–1097. https://doi.org/10.1086/509707
41. Marzec P, Richer M, Lahue RS. Therapeutic targeting of mismatch repair proteins in triplet repeat expansion diseases. DNA Repair. 2025;147:103817. https://doi.org/10.1016/j.dnarep.2025.103817
42. Edvardson S, Cinnamon Y, Ta-Shma A, Shaag A, Yim YI, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLOS One. 2012;7(5):e36458. https://doi.org/10.1371/journal.pone.0036458
43. Han Y-C, Ma B, Guo S, Yang M, Li L-J, et al. Leptin regulates disc cartilage endplate degeneration and ossification through activation of the MAPK-ERK signalling pathway in vivo and in vitro. Journal of Cellular and Molecular Medicine. 2018;22(4):2098–2109. https://doi.org/10.1111/jcmm.13398
44. Xiao H, Li W, Qin Y, Lin Z, Qian C, et al. Crosstalk between lipid metabolism and bone homeostasis: Exploring intricate signaling relationships. Research. 2024;7:0447. https://doi.org/10.34133/research.0447
45. Londraville RL, Tuttle M, Liu Q, Andronowski JM. Endospanin is a candidate for regulating leptin sensitivity. Frontiers in Physiology. 2022;12:786299. https://doi.org/10.3389/fphys.2021.786299
46. Su Y, Ding J, Yang F, He C, Xu Y, et al. The regulatory role of PDE4B in the progression of inflammatory function study. Frontiers in Pharmacology. 2022;13:982130. https://doi.org/10.3389/fphar.2022.982130
47. Decet M, Scott P, Kuenen S, Meftah D, Swerts J, et al. A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism. Cell Reports Medicine. 2024;5(10):101749. https://doi.org/10.1016/j.xcrm.2024.101749
48. Fang Y, Barrows D, Dabas Y, Carroll TS, Singer S, et al. ATRX guards against aberrant differentiation in mesenchymal progenitor cells. Nucleic Acids Research. 2024;52(9):4950–4968. https://doi.org/10.1093/nar/gkae160
49. Rigueur D. A primer for fibroblast growth factor 16 (FGF16). Differentiation. 2024;140:100817. https://doi.org/10.1016/j.diff.2024.100817
50. Del Pino Molina L, Monzón Manzano E, Gianelli C, Bravo Gallego LY, Bujalance Fernández J, et al. Effects of two different variants in the MAGT1 gene on B cell subsets, platelet function, and cell glycome composition. Frontiers in Immunology. 2025;16:1547808. https://doi.org/10.3389/fimmu.2025.1547808
51. Liu X, Li W, Yang C, Luo J, Tang B. Cuproptosis-related genes signature could predict prognosis and the response of immunotherapy in cervical cancer. Translational Cancer Research. 2025;14(1):129–140. https://doi.org/10.21037/tcr-24-641
52. Bai T, Wang L, Qiao Z, Wang Z. Cuproptosis, a potential target for the therapy of diabetic critical limb ischemia. Free Radical Biology and Medicine. 2025;234:131–140. https://doi.org/10.1016/j.freeradbiomed.2025.04.022
53. Lu B, Nie X-H, Yin R, Ding P, Su Z-Z, et al. PGAM4 silencing inhibited glycolysis and chemoresistance to temozolomide in glioma cells. Cell Biology International. 2023;47(4):776–786. https://doi.org/10.1002/cbin.11983
54. Hori K, Shimaoka K, Hoshino M. AUTS2 gene: Keys to understanding the pathogenesis of neurodevelopmental disorders. Cells. 2021;11(1):11. https://doi.org/10.3390/cells11010011
55. Weisner PA, Chen CY, Sun Y, Yoo J, Kao WC, et al. A mouse mutation that dysregulates neighboring Galnt17 and Auts2 genes is associated with phenotypes related to the human AUTS2 syndrome. G3 Genes. 2019;9(11):3891–3906. https://doi.org/10.1534/g3.119.400723
56. Raman J, Guan Y, Perrine CL, Gerken TA, Tabak LA. UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferases: Completion of the family tree. Glycobiology. 2012;22(6):768–777. https://doi.org/10.1093/glycob/cwr183
57. Narimatsu Y, Büll C, Chen Y-H, Wandall HH, Yang Z, et al. Genetic glycoengineering in mammalian cells. Journal of Biological Chemistry. 2021;296:100448. https://doi.org/10.1016/j.jbc.2021.100448
58. Engmann O, Labonté B, Mitchell A, Bashtrykov P, Calipari ES, et al. Cocaine-induced chromatin modifications associate with increased expression and three-dimensional looping of Auts2. Biological Psychiatry. 2017;82(11):794–805. https://doi.org/10.1016/j.biopsych.2017.04.013
59. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, et al. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology. 2011;76(24):2111. https://doi.org/10.1212/01.wnl.0000399191.79091.28
60. Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, et al. Regulation of autism-relevant behaviors by cerebellarprefrontal cortical circuits. Nature Neuroscience. 2020;23:1102–1110. https://doi.org/10.1038/s41593-020-0665-z
61. Gilbert J, Man H-Y. Fundamental elements in autism: From neurogenesis and neurite growth to synaptic plasticity. Frontiers in Cellular Neuroscience. 2017;11:359. https://doi.org/10.3389/fncel.2017.00359
62. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453:175–183. https://doi.org/10.1038/nature06936
63. Adelson DL, Raison JM, Edgar RC. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proceedings of the National Academy of Sciences. 2009;106(31):12855–12860. https://doi.org/10.1073/pnas.0901282106
64. Glazko VI, Kosovsky GYu, Glazko TT. The sources of genome variability as domestication drivers (review). Agricultural Biology. 2022;57(5):832–851. https://doi.org/10.15389/agrobiology.2022.5.832eng
65. Zattera ML, Bruschi DP. Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells. 2022;11(21):3373. https://doi.org/10.3390/cells11213373
66. Zhao P, Peng C, Fang L, Wang Z, Liu GE. Taming transposable elements in livestock and poultry: A review of their roles and applications. Genetics Selection Evolution. 2023;55(1):50. https://doi.org/10.1186/s12711-023-00821-2
67. Mikina W, Hałakuc P, Milanowski R. Transposon-derived introns as an element shaping the structure of eukaryotic genomes. Mobile DNA. 2024;15(1):15. https://doi.org/10.1186/s13100-024-00325-w




