Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
High-filled, or high-barrier packaging materials are a promising direction of dairy packaging. These films provide safety, quality, and operational stability. In addition, they require no sophisticated equipment for recycling. Mineral calcium carbonate remains the most popular inorganic chemical filler. However, mineral-filled polymer compositions are understudied from the perspective of their structure and properties. These properties depend on the polymer base (binder), the mineral filler, its grinding, the technology of combining in the melt during extrusion, the dispersion of the filler in uncertain environment, etc. By studying the effect of filler concentration on the microstructure of polyethylene film samples, one can assess the dispersion of calcium carbonate in the polymer to reveal the processes behind the changes in the physical and mechanical properties of films. A series of previous studies featured a polyethylene film filled with 20–70% calcium carbonate. In this research, dihydroquercetin in concentrations of 0.5 and 1.0% served as an additional modifying component with antioxidant properties. The film samples were visually homogeneous. The method of scanning electron microscopy indicates a relatively uniform distribution of filler particles (50 wt%). The samples with 70 wt% showed a rather loose and uneven distribution of particles under the X-ray spectroscopy. The micrographs revealed crystalline particles of dihydroquercetin diffusing onto the surface of the packaging material.
film, packaging material, dairy products, mineral filler, calcium carbonate, dihydroquercetin, structural changes
1. Zobkova, Z. S. Poroki moloka i molochnyh produktov / Z. S. Zobkova. – Moskva : [b. i.], 2006. – 99 s.
2. Hurshudyan, S. A. Kachestvo i bezopasnost' pischevyh produktov. Transformaciya ponyatiy / S. A. Hurshudyan, N. S. Pryanichnikova, A. E. Ryabova // Pischevaya promyshlennost'. 2022. № 3. S. 8–10. https://doi.org/10.52653/PPI.2022.3.3.001; https:// elibrary.ru/htckfl
3. Yurova, E. A. Ocenka kachestva i hranimosposobnosti molochnyh produktov funkcional'noy napravlennosti / E. A. Yurova, S. A. Fil'chakova // Pererabotka moloka. 2019. № 10(240). S. 6–11. https://doi.org/10.33465/2222-5455-2019-10-6-10; https://elibrary.ru/ztvszs
4. Hatko, Z. N. Polimernye kompozicii dlya plenok pischevogo naznacheniya (obzor) / Z. N. Hatko, A. A. Ashinova // Novye tehnologii. 2016. № 1. S. 30–34. https://elibrary.ru/vvtxcn
5. Ershova. O. V. Sovremennye kompozicionnye materialy na osnove polimernoy matricy / O. V. Ershova, S. K. Ivanovskiy, L. V. Chuprova, A. N. Bahaeva // Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy. 2015. № 4-1. S. 14–18. https://elibrary.ru/tnzjzd
6. Khalaf. M. N. Mechanical properties of filled high density polyethylene / M. N. Khalaf // Journal of Saudi chemical society. 2015. Vol. 19(1). P. 88–91. https://doi.org/10.1016/j.jscs.2011.12.024
7. Mel'nichenko, M. A. Vliyanie sostava napolniteley na svoystva polimernyh kompozicionnyh materialov / M. A. Mel'nichenko, O. V. Ershova, L. V. Chuprova // Molodoy uchenyy. 2015. № 16(96). S. 199–202. https://elibrary.ru/ujlnin
8. Kolosova, A. S. Napolniteli dlya modifikacii sovremennyh polimernyh kompozicionnyh materialov / A. S. Kolosova, M. K. Sokol'skaya, I. A. Vitkalova [i dr.] // Fundamental'nye issledovaniya. 2017. № 10-3. S. 459–465. https://elibrary.ru/zrramn
9. Myalenko, D. M. Issledovaniya izmeneniya fiziko-mehanicheskih harakteristik polimernyh plenochnyh materialov na osnove polietilena, napolnennyh SaSO3, pri vozdeystvii ul'trafioletovogo izlucheniya / D. M. Myalenko, P. G. Mihaylenko // Hranenie i pererabotka sel'hozsyr'ya. 2021. № 1. S. 30–37. https://doi.org/10.36107/spfp.2021.186; https://elibrary.ru/sejjmj
10. Timoshkov, P. N. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya / P. N. Timoshkov, D. I. Kogan // Trudy VIAM. 2013. № 4. S. 7. https://elibrary.ru/qcderr
11. Vydrina, T. S. Svoystva drevesno-polimernyh kompozitov na osnove agrarnyh othodov i aktivatora razlozheniya / T. S. Vydrina, A. V. Artemov, A. E. Shkuro [i dr.] // Vestnik Tehnologicheskogo universiteta. 2020. T. 23, № 10. S. 25–29. https://elibrary.ru/jijjvf
12. Fedotova, O. B. Netradicionnyy podhod k obezzarazhivaniyu pischevoy upakovki / O. B. Fedotova, D. M. Myalenko // Molochnaya promyshlennost'. 2016. № 1. S. 25–27. https://elibrary.ru/vlmaih
13. Rodionov, D. A. Umnaya upakovka / D. A. Rodionov, I. V. Suvorina, P. V. Makeev [i dr.] // Molodoy uchenyy. 2016. № 2(106). S. 1066–1069. https://elibrary.ru/vicaiz
14. Mzhachih, E. I. Modifikaciya polimerov v proizvodstve taroupakovochnyh materialov: monografiya / E. I. Mzhachih, V. N. Ivanova, L. A. Suhareva [i dr.]. – M.: DeLi print, 2009. – 494 s.
15. Orlova, S. V. K voprosam biodostupnosti i bezopasnosti digidrokvercetina (obzor) / S. V. Orlova, V. V. Tatarinov, E. A. Nikitina [i dr.] // Himiko-farmacevticheskiy zhurnal. 2021. T. 55, № 11. S. 3–8. https://doi.org/10.30906/0023-1134-2021-55-11-3-8; https://elibrary.ru/exvlft
16. Selivanova, I. A. Inzheneriya kristallov digidrokvercetina / I. A. Selivanova, R. P. Terehov // Himiko-farmacevticheskiy zhurnal. 2019. T. 53, № 11. S. 53–57. – https://doi.org/10.30906/0023-1134-2019-53-11-53-57; https://elibrary.ru/lqscxs
17. Fomichev, Yu. P. Digidrokvercetin i arabinogalaktan–prirodnye bioregulyatory v zhiznedeyatel'nosti cheloveka i zhivotnyh, primenenie v sel'skom hozyaystve i pischevoy promyshlennosti / Yu. P. Fomichev, L. A. Nikanova, V. I. Dorozhkin – M.: ID «Nauchnaya biblioteka», 2017. – 702 s.
18. Awan, M. O. Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay / M. O. Awan [et al.] // Physica B: Condensed Matter. 2021. Vol. 606. 412568. https://doi.org/10.1016/j.physb.2020.412568