Abstract and keywords
Abstract (English):
Berries are a source of biologically active substances in human diet. Gooseberries have attractive sensory properties and high nutritional value. However, modern science knows little about micromycetic contamination of gooseberry. The research objective was to define the mycobiota composition of Ribes uva-crispa L. varieties during storage. The study featured the mycobiota of gooseberry varieties Senator and Rozoviy 2. The berries were harvested on the test field of the Siberian Federal Scientific Center of Agro-BioTechnologies of the Russian Academy of Sciences. They were stored for 18 days at 18 ± 2 and 4 ± 2°C and a relative humidity of 90–95%. The authors used standard research methods to identify the mycobiota and attribute them to nine genera by morphological structure: Aspergillus, Mucor, Penicillium, Rhizopus, Alternaria, Aureobasidium, Cladosporium, Cryptococcus, and anaerobic yeast. The frequency of occurrence varied from 20 to 100%. Micromycetes of the genus Fusarium were present only in the Senator sample, which also demonstrated a 100% occurrence of Penicillium, Alternaria, Aspergillus, and Cladosporium. In the sample of Rozoviy 2, Penicillium and Cladosporium occurred in 80%. The Senator sample was twice as low in micromycetes as the Rozoviy 2 berries: 558 vs. 945, respectively. The Senator berries grew in micromycetes due to the Cladosporium fungi while Rozoviy 2 owed its micromycetic increase to Penicillium. Both varieties showed no signs of ascomycetes known as a powdery mildew agent. During storage, the growth of yeast and yeast-like fungi depended on the variety of berries while the growth of mycelial fungi depended on the variety and storage temperature. The data obtained expand the scope of scientific knowledge about the generic composition of gooseberry mycobiota, which may help to select correct anti-spoilage measures.

Keywords:
Ribes uva-crispa L., berry, variety, mycobiota, mold fungi, yeast, microbiota, storage
Text
Text (PDF): Read Download
References

1. Akimov MYu. New breeding and technological evaluation criteria for fruit and berry products for the healthy and dietary food industry. Problems of Nutrition. 2020;89(4):244–254. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10057; https://www.elibrary.ru/ZDWZMY

2. Newman G. Fruit and vegetables: Prevention and cure? In: Short E, editor. A prescription for healthy living. A guide to lifestyle medicine. Academic Press; 2021. pp. 243–253. https://doi.org/10.1016/B978-0-12-821573-9.00022-9

3. Yahia EM, Fonseca JM, Kitinoja L. Postharvest losses and waste. In: Yahia EM, editor. Postharvest technology of perishable horticultural commodities. Woodhead Publishing; 2019. pp. 43–69. https://doi.org/10.1016/B978-0-12-813276-0.00002-X

4. Sedova IB, Chalyy ZA, Efimochkina NR, Sokolov IE, Koltsov VA, Zhidekhina TV, et al. Mycotoxin contamination of fresh berries and fruits marketed in the central region of Russia. Health Risk Analysis. 2022;(4):87–99. (In Russ.). https://doi.org/10.21668/health.risk/2022.4.08; https://www.elibrary.ru/TBZOVR

5. Ngolong Ngea GL, Qian X, Yang Q, Dhanasekaran S, Ianiri G, Ballester A-R, et al. Securing fruit production: Opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections. Comprehensive Reviews in Food Science and Food Safety. 2021;20(3):2508–2533. https://doi.org/10.1111/1541-4337.12729

6. Zhang H, Boateng NAS, Ngolong Ngea GL, Shi Y, Lin H, Yang Q, et al. Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Comprehensive Reviews in Food Science and Food Safety. 2021;20(5):4906–4930. https://doi.org/10.1111/1541-4337.12783

7. Balali GI, Yar DD, Dela VGA, Adjei-Kusi P. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. International Journal of Microbiology. 2020;2020:3029295. https://doi.org/10.1155/2020/3029295

8. Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, et al. Evaluation of three antimicrobial peptides mixtures to control the phytopathogen responsible for fire blight disease. Plants. 2021;10(12):2637. https://doi.org/10.3390/plants10122637

9. Çağlayan K, Roumi V, Gazel M, Elçi E, Acioğlu M, Mavric Plesko I, et al. Identification and characterization of a novel Robigovirus species from sweet cherry in Turkey. Pathogens. 2019;8(2):57. https://doi.org/10.3390/pathogens8020057

10. Razo Sh, Panferov VG, Safenkova IV, Drenova NV, Varitsev YuA, Zherdev AV, et al. Development of an immunochromatographic test system with nanozyme amplification for detecting the phytopathogen Erwinia amylovora. Achievements of Science and Technology in Agro-Industrial Complex. 2022;36(1):34–39. (In Russ.). https://doi.org/10.53859/02352451_2022_36_1_34; https://www.elibrary.ru/JHIGCR

11. Oliveira M, Rodrigues CM, Teixeira P. Microbiological quality of raw berries and their products: A focus on foodborne pathogens. Heliyon, 2019;5(12):e02992. https://doi.org/10.1016/j.heliyon.2019.e02992

12. Gomzhina MM, Gasich EL, Gagkaeva TYu, Gannibal PhB. Biodiversity of fungi inhabiting blueberry growing in North-West Russia and Finland. Mycology and Phytopathology. 2021;55(5):353–370. (In Russ.). https://doi.org/10.31857/S0026364821050056; https://www.elibrary.ru/NMBBZV

13. Bano A, Gupta A, Prusty MR, Kumar M. Elicitation of fruit fungi infection and its protective response to improve the postharvest quality of fruits. Stresses. 2023;3(1):231–255. https://doi.org/10.3390/stresses3010018

14. Petrasch S, Silva CJ, Mesquida-Pesci SD, Gallegos K, van den Abeele C, Papin V, et al. Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Frontiers in Plant Science. 2019;10:223. https://doi.org/10.3389/fpls.2019.00223

15. Kłapeć T, Wócik-Fatla A, Farian E, Kowalczyk K, Cholewa G, Cholewa A, et al. Mycobiota of berry fruits – levels of filamentous fungi and mycotoxins, composition of fungi, and analysis of potential health risk for consumers. Annals of Agricultural and Environmental Medicine. 2022;29(1):28–37. https://doi.org/10.26444/aaem/147297

16. Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Frontiers in Microbiology. 2020;10:2908. https://doi.org/10.3389/fmicb.2019.02908

17. Wu Y, Yin C, Huang R, He M, Duan X, Jiang Y, et al. Enhanced resistance in “shatang” mandarin fruit against Penicillium italicum caused by 2-methoxy-1, 4-naphthoquinone. Physiological and Molecular Plant Pathology. 2022;119:101828. https://doi.org/10.1016/j.pmpp.2022.101828

18. Aitymbet Zh, Urmanov GA, Sypabekkyzy G, Rakhimova EV. Species composition of the mycobiota of the Sievers apple tree (Malus sieversii (Ledeb) M. Roem.) in Kazakhstan. Problems of Botany of South Siberia and Mongolia. 2021;(20–1):17–22. (In Russ.). https://doi.org/10.14258/pbssm.2021003; https://www.elibrary.ru/QAALRA

19. Vybornova MV, Polunina TS, Lavrinova VA. Micobiota of currant berries. Proceedings of the North Caucasus Federal Scientific Center for Horticulture, Viticulture, and Winemaking. 2020;29:122–126. (In Russ.). https://doi.org/10.30679/2587-9847-2020-29-122-126; https://www.elibrary.ru/FYWMIE

20. Gómez-Albarrán C, Melguizo C, Patiño B, Vázquez C, Gil-Serna J. Diversity of mycobiota in spanish grape berries and selection of Hanseniaspora uvarum U1 to prevent mycotoxin contamination. Toxins. 2021;13(9):649. https://doi.org/10.3390/toxins13090649

21. Zhidekhina TV, Lavrinova VA, Polunina TS. Mycological profiling of raspberry cultivars in storage. Horticulture and Viticulture. 2020;(6):40–45. (In Russ.). https://doi.org/10.31676/0235-2591-2020-6-40-45; https://www.elibrary.ru/LFIYKW

22. Rodrigues P, Driss JO, Gomes-Laranjo J, Sampaio A. Impact of cultivar, processing and storage on the mycobiota of European chestnut fruits. Agriculture. 2022;12(11):1930. https://doi.org/10.3390/agriculture12111930

23. Hussein MA, El-Said AHM, Yassein AS. Mycobiota associated with strawberry fruits, their mycotoxin potential and pectinase activity. Mycology. 2020;11(2):158–166. https://doi.org/10.1080/21501203.2020.1759719

24. Quaglia M, Santinelli M, Sulyok M, Onofri A, Covarelli L, Beccari G. Aspergillus, Penicillium and Cladosporium species associated with dried date fruits collected in the Perugia (Umbria, Central Italy) market. International Journal of Food Microbiology. 2020;322:108585. https://doi.org/10.1016/j.ijfoodmicro.2020.108585

25. Akimov MYu, Bessonov VV, Kodentsova VM, Eller KI, Vrzhesinskaya OA, Beketova NA, et al. Biological value of fruits and berries of Russian production. Problems of Nutrition. 2020;89(4):220–232. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10055; https://www.elibrary.ru/UOAQLM

26. Erbil N, Murathan Z, Arslan M, İlçim A. Comparison of some biochemical content and biological activities of gooseberry (Ribes uva-crispa L.) and alpine currant (Ribes alpinum L.). Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi. 2021;18(2):197–203. (In Turkish). https://doi.org/10.25308/aduziraat.907968

27. Orsavová O, Hlaváčová I, Mlček J, Snopek L, Mišurcová L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chemistry. 2019;284:323–333. https://doi.org/10.1016/j.foodchem.2019.01.072

28. Maslov AV, Mingaleeva ZSh, Yamashev TA, Shibaeva NF. Effect of a complex plant additive on flour mixes and wheat dough. Food Processing: Techniques and Technology. 2022;52(3):511–525. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2385; https://www.elibrary.ru/UBJCWH

29. Motovilova NV, Davydenko NI, Golub OV, Chekryga GP, Motovilov OK. The qualitative qualitative characteristics of pastille based on gooseberry puree. Technology and Merchandising of the Innovative Foodstuff. 2022;74(3):93–99. (In Russ.). https://www.elibrary.ru/VEOGXN

30. Limonnikova SG, Velichko NA. Development of new types of preserves with gooseberry sauce. Bulletin of KSAU. 2021;169(4):127–132. (In Russ.). https://doi.org/10.36718/1819-4036-2021-4-127-132; https://www.elibrary.ru/ULIKHT

31. Magomedov RK. Disinfection of berries. Proceedings of the Kuban State Agrarian University. 2021;92:148–152. (In Russ.). https://doi.org/10.21515/1999-1703-91-148-152; https://www.elibrary.ru/QULTGQ

32. Prosekov AYu, Golubtsova YuV. Diagnosis of fruit and berry raw materials using DNA-test systems. Storage and Processing of Farm Products. 2019;(1):98–105. (In Russ.). https://www.elibrary.ru/IZBXLS

33. Panstruga R, Kuhn H. Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Molecular Plant Pathology. 2018;20(4):463–470. https://doi.org/10.1111/mpp.12771

34. Bilay VI, Kovalʹ EhZ. Aspergillus. Kiev: Naukova dumka; 1988. 204 p. (In Russ.).

35. Egorova LN. Soil fungi of the Far East: Hyphomycytes. Leningrad: Nauka; 1986. 191 p. (In Russ.).

36. Pidoplichko NM. Penicillin: keys to identify species. Kiev: Naukova dumka; 1972. 150 p. (In Russ.).

37. Satton D, Fotergill A, Rinalʹdi M. Determining pathogenic and opportunistic pathogenic fungi. Moscow: Mir; 2001. 468 p. (In Russ.).

38. Bilay VI. Methods of experimental mycology. Kiev: Naukova dumka; 1982. 550 p. (In Russ.).

39. Mirchink TG, Ozerskaya SM, Marfenina OE. Identifying complexes of microscopic soil fungi by their structure. Biological Sciences. 1982;(1):61–69. (In Russ.).

40. Chekryga GP, Motovilov KYa. Mycobiota of bee products. Mycology and Phytopathology. 2011;45(2):158–163. (In Russ.). https://www.elibrary.ru/NWYLCR

41. Sorokin OD. Applied Statistics on a Computer. Krasnoobsk: GUP RPO SO RASKHN; 2004. 162 p. (In Russ.).


Login or Create
* Forgot password?