Abstract and keywords
Abstract (English):
The article deals with the sentiment analysis regimentation as a relevant direction in automated natural language processing and its linguistic potential. Despite its impressive practical significance, the sentiment analysis still lacks reliable theoretical foundation. Although information technologies develop very fast, their fundamental foundations correlate with the linguistic system of knowledge. In fact, the methodological priority of the applied linguistics has no alternative with regard to the interdisciplinary specificity of the modern communication. The complex nature of this research made the authors appeal to the computer linguistics in order to provide a meta-description on the algorithmization and modeling of sentiment evaluation. The effectiveness of the relevant practice was conditioned by the optimal configuration of the procedure and an appropriate material evaluation. The preprocessing included identifying the meta-structure, defining its referentiality and level orientation, and choosing the analysis model. The authors described these main steps of the preprocessing algorithm, as well as the relevant practice. The study contributes to productive theoretical optimization of text sentiment analysis. In a broad context, the expedient disclosure of linguistic potential is relevant to the whole sphere of automated natural language processing.

sentiment analysis, automated processing, natural language, linguistic specificity, regimentation, preprocessing, model, algorithm
Publication text (PDF): Read Download

1. Barkovich A. A. Internet discourse: metalanguage models of practice. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 2. Yazykoznanie, 2015, (5): 171–183. (In Russ.)]

2. Bolshakova E. I., Klyshinsky E. S., Lande D. V., Noskov A. A., Peskova O. V., Yagunova E. V. Automatic processing of natural language texts and computational linguistics. Moscow: MIEM, 2011. 272. (In Russ.)]

3. Kotelnikov E. V., Razova E. V., Kotelnikova A. V., Vychegzhanin S. V. Modern sentiment lexicons for opinion mining in English and Russian (analytical survey). Nauchno-tekhnicheskaya informatsiya. Ser. 2. Informatsionnye protsessy i sistemy, 2020, (12): 16–33. (In Russ.)]

4. Kulagin D. I. Publicly available sentiment dictionary for the Russian language KartaSlovSent. Computational linguistics and intellectual technologies: Annual Intern. Conf. "Dialogue", Moscow, 16–19 Jun 2021. Moscow: RSUH, 2021, iss. 20, 1106–1119. (In Russ.)]

5. Mayorova E. V. On sentiment analysis and prospects for its application. Sotsialnye i gumanitarnye nauki. Otechestvennaya i zarubezhnaya literatura. Seriya 6: Yazykoznanie. Referativnyy zhurnal, 2020, (4): 78–87. (In Russ.)]

6. Pazelskaya A. G., Solovyev A. N. A method of sentiment analysis in Russian texts. Computational linguistics and intellectual technologies: Annual Intern. Conf. "Dialogue", Bekasovo, 25–29 May 2011. Moscow: RSUH, 2011, iss. 10, 510–522. (In Russ.)]

7. Poletaeva N. G. Classification of systems machine learning. Vestnik of Immanuel Kant Baltic Federal University. Series: Physical-mathematical and technical sciences, 2020, (1): 5–22. (In Russ.)]

8. Semina T. A. Sentiment analysis: modern approaches and existing problems. Sotsialnye i gumanitarnye nauki. Otechestvennaya i zarubezhnaya literatura. Seriya 6: Yazykoznanie. Referativnyy zhurnal, 2020, (4): 47–64. (In Russ.)]

9. Kharlamov A. A., Yermolenko T. V., Zhonin A. A. Processes dynamics modeling on the base of text corpus sequence analysis. Inzhenernyj vestnik Dona, 2013, (4). (In Russ.)] URL: (accessed 30 Mar 2023).

10. Chernyshevich M. V. Opinion classification for automatic sentiment analysis of the text. Scientific notes of the Higher Educational Institution "VSU named after P. M. Masherov", 2018, 28: 136–140. (In Russ.)]

11. Araque O., Zhu G., Iglesias C. A. A semantic similarity-based perspective of affect lexicons for sentiment analysis. Knowledge-Based Systems, 2019, (165): 346–359.

12. Bancken W., Alfarone D., Davis J. Automatically detecting and rating product aspects from textual customer reviews. Interactions between Data Mining and Natural Language Processing: Proc. 1st Intern. Workshop (DMNLP 2014), Nancy, 15 Sep 2014. CEUR-WS, 2014, 1–16.

13. Barkovich A. A. Informational linguistics: the new communicational reality. Cambridge: Cambridge Scholars, 2020, 271.

14. Beigi G., Hu X., Maciejewski R., Liu H. An overview of sentiment analysis in social media and its applications in disaster relief. Sentiment analysis and ontology engineering: an environment of computational intelligence, eds. Pedrycz W., Chen S.-M. Cham: Springer, 2016, 313–340.

15. Bradley M. M., Lang P. J. Affective Norms for English Words (ANEW): instruction manual and affective ratings. Technical Report C-1. The Center for Research in Psychophysiology, University of Florida, 1999, 48.

16. Dodds P. S., Clark E. M., Desu S., Frank M. R., Reagan A. J., Williams J. R., Mitchell L., Harris K. D., Kloumann I. M., Bagrow J. P., Megerdoomian K., McMahon M. T., Tivnan B. F., Danforth C. M. Human language reveals a universal positivity bias. PNAS, 2015, 112(8): 2389–2394.

17. Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. 2nd ed. Sebastopol: O'Reilly Media, 2019, 856.

18. Kim S.-M., Hovy E. Extracting opinions, opinion holders, and topics expressed in online news media text. Proceedings of the Workshop on Sentiment and Subjectivity in Text (SST '06), Sidney, 22 Jul 2006. Stroudsburg: ACL, 1–8.

19. Liu B. Corpus-based approach. Sentiment analysis and opinion mining. San Rafael: Morgan & Claypool, 2012, 95–99.

20. Nasukawa T., Yi J. Sentiment analysis: capturing favorability using natural language processing. Proceedings of the 2nd International Conference on Knowledge Capture (K-CAP'03), Sanibel, 23–25 Oct 2003. NY: ACM, 2003, 70–77.

21. Pang B., Lee L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2008, 2(1-2): 1–135.

22. Paramonov I. V., Poletaev A. Yu. Adaptation of semantic rule-based sentiment analysis approach for Russian language. Proceedings of the 30th Conference of Open Innovations Association FRUCT, Oulu, 27–29 Oct 2021. IEEE, 2021, 155–164.

23. Poria S., Hazarika D., Majumder N., Mihalcea R. Beneath the tip of the iceberg: current challenges and new directions in sentiment analysis research. IEEE Transactions on Affective Computing, 2020, 14(1): 108–132.

24. Rana M. R. R., Nawaz A., Iqbal J. A survey on sentiment classification algorithms, challenges and applications. Acta Universitatis Sapientiae, Informatica, 2018, 10(1): 58–72.

25. Reagan A. J., Danforth C. M., Tivnan B., Williams J. R., Dodds P. S. Sentiment analysis methods for understanding large-scale texts: a case for using continuum-scored words and word shift graphs. EPJ Data Science, 2017, 6.

26. Taboada M., Brooke J., Tofiloski M., Voll K., Stede M. Lexicon-based methods for sentiment analysis. Computational linguistics, 2011, 37(2): 267–307.

27. Wilks Y., Bien J. Beliefs, points of view, and multiple environments. Cognitive science, 1983, 7(2): 95–119.

Login or Create
* Forgot password?