from 01.01.2009 until now
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Plant metabolites undergo a thorough toxicity test before becoming part of pharmaceuticals or functional food products. In vivo toxicity studies on animals are expensive and time-consuming. Moreover, they require an ethic approval and a lot of expendables. Alternative methods often involve microbial models. As a result, they reduce the number of animal test subjects on further research stages. This study tested the toxicity of several plant metabolites in vitro on Aliivibrio fischeri and gastrointestinal microbiota. The research included rutin, rosmarinic acid, trans-cinnamic acid, quercetin, kaempferol, baicalin, and wogonin (≥ 94%). These plant metabolites were isolated from callus, suspension, and root cultures of Siberian plants. Their toxic effects were tested on the bioluminescent properties of Aliivibrio fischeri. The analysis relied on the method of thin-layer chromatography. Another experiment assessed the toxic effects of these plant metabolites on Propionibacterium jensenii (B-6085), Propionibacterium freudenreichii (B-11921), Lactobacillus freudenreichii subsp. freudenreichii (B-6561), Lactobacillus plantarum (B-884), Bifidobacterium longum (AC-1257), and Bifidobacterium bifidum (AC-1779). The solutions of rutin, quercetin, wogonin, and baicalin (20% ethanol) were toxic towards A. fischeri. Kaempferol was the only metabolite that stimulated the biomass growth of lacto- and bifidobacteria. Quercetin, rutin, and trans-cinnamic acid inhibited the biomass growth of propionic bacteria. The other metabolites suppressed the negative impact of 20% ethanol without affecting the growth of the test strains. A. fischeri tests proved to be a reliable preliminary toxicity assessment of plant materials before in-vivo studies.
Plant metabolites, biologically active substances, bioluminescence, toxicity, Aliivibrio fischeri, microbiota
1. Vesnina AD, Milentyeva IS, Le VM, Fedorova AM, Altshuler OG, et al. Quercetin isolated from Hedysarum neglectum Ledeb. as a preventer of metabolic diseases. Foods and Raw Materials. 2025;13(1):192–201. https://doi.org/10.21603/2308-4057-2025-1-633
2. Frolova AS, Fokina AD, Vednina AD, Milentyeva IS, Le VM, et al. Study of the geroprotective potential in vivo of the metabolite Hedysarum neglectum. 2024;80(10):59–67. (In Russ.) https://elibrary.ru/LYMEYQ
3. Dmitrieva A, Kozlova O, Atuchin V, Milentieva I, Vesnina A, et al. Study of the effect of baicalin from Scutellaria baicalensis on the gastrointestinal tract normoflora and Helicobacter pylori. International Journal of Molecular Sciences. 2023;24(15):11906. https://doi.org/10.3390/ijms241511906
4. Milentyeva IS, Vesnina AD, Fedorova AM, Ostapova EV, Larichev TA. Chlorogenic acid and biohanin A from Trifolium pratense L. callus culture extract: Functional activity in vivo. Food Processing: Techniques and Technology. 2023;53(4):754–765. (In Russ.) https://doi.org/10.21603/2074-9414-2023-4-2475
5. Vesnina A, Milentyeva I, Minina V, Kozlova O, Asyakina L. Evaluation of the in vivo anti-atherosclerotic activity of quercetin isolated from the hairy roots of Hedysarum neglectum Ledeb. Life. 2023;13(8):1706. https://doi.org/10.3390/life13081706
6. Demirel S, Yilmaz DA. Effects of flavonoids on vascular activity. Global Translational Medicine. 2024;3(2):2458. https://doi.org/10.36922/gtm.2458
7. Qayum J, Bibi A, Preet G, Farid A. Flavonoid associated preclinical and clinical trials involved in insulin resistance/hyperglycemia, obesity, liver intoxication, aging, and cardiovascular diseases. In: Mishra N, Ashique S, Gowda JBH, Farid A, Garg A, editors. Role of flavonoids in chronic metabolic diseases: From bench to clinic. Beverly, MA: Scrivener Publishing; 2024. pp. 571–589. https://doi.org/10.1002/9781394238071.ch16
8. Ye D, Moon JH, Jung GY. Recent progress in metabolic engineering of escherichia coli for the production of various C4 and C5-dicarboxylic acids. Journal of Agricultural and Food Chemistry. 2023;71(29):10916–10931. https://doi.org/10.1021/acs.jafc.3c02156
9. Duda-Chodak A, Tarko T. Possible side effects of polyphenols and their interactions with medicines. Molecules. 2023;28(6):2536. https://doi.org/10.3390/molecules28062536
10. Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, et al. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews. 2015;47(2):175–190. https://doi.org/10.3109/03602532.2014.1003649
11. Bhamre VG, Deore PD, Amrutkar RD, Patil VR. Vinod Polyphenols: The interactions with CYP 450 isoenzymes and effect on pharmacokinetics of drugs. Current Trends in Pharmacy and Pharmaceutical Chemistry. 2022;4(1):13–23. https://doi.org/10.18231/j.ctppc.2022.004
12. Miadoková E. Isoflavonoids – An overview of their biological activities and potential health benefits. Interdisciplinary Toxicology. 2009;2(4):211–218. https://doi.org/10.2478/v10102-009-0021-3
13. Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytotherapy Research. 2016;30(9):1379–1391. https://doi.org/10.1002/ptr.5643
14. Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: Phenolicsinduced oxidative damage mediated by metals in plants. Toxicology. 2002;177(1):67–80. https://doi.org/10.1016/S0300-483X(02)00196-8
15. Zheng LF, Dai F, Zhou B, Yang L, Liu ZL. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure – activity relationship. Food and Chemical Toxicology. 2008;46(1):149–156. https://doi.org/10.1016/j.fct.2007.07.010
16. Vanhees K, de Bock L, Godschalk RWL, van Schooten FJ, van Waalwijk van Doorn-Khosrovani SB. Prenatal exposure to flavonoids: Implication for cancer risk. Toxicological sciences. 2011;120(1):59–67. https://doi.org/10.1093/toxsci/kfq388
17. Białk-Bielińska A, Grabarczyk Ł, Mulkiewicz E, Puckowski A, Stolte S, et al. Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor. Environmental Science and Pollution Research. 2022;29:26977–26991. https://doi.org/10.1007/s11356-021-17928-y
18. Khrulnova SA, Manukhov IV, Zavilgelsky GB, Zarubina AP. Aliivibrio logei KCh1 (Kamchatka isolate): Biochemical and bioluminescence characteristics and cloning of the lux operon. Microbiology. 2010;79(3):368–375. (In Russ.) https://elibrary.ru/MSQKKN
19. Rodrigues S, Alves RS, Antunes SC. Impact of caffeine on aquatic ecosystems: Assessing trophic-level biological responses. Journal of Xenobiotics. 2025;15(3):86. https://doi.org/10.3390/jox15030086
20. Yao Z, Wang D, Wu X, Lin Z, Long X, et al. Hormetic mechanism of sulfonamides on Aliivibrio fischeri luminescence based on a bacterial cell-cell communication. Chemosphere. 2019;215:793–799. https://doi.org/10.1016/j.chemosphere.2018.10.045
21. Abbas M, Adil M, Ehtisham-Ul-Haque S, Munir B, Yameen M, et al. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. The Science of The Total Environment. 2018;626:1295–1309. https://doi.org/10.1016/j.scitotenv.2018.01.066
22. Yang Z, Zhu Y, Dong Z, Hao Y, Wang C, et al. Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment. Biomaterials. 2022;281:121332. https://doi.org/10.1016/j.biomaterials.2021.121332
23. Fenyvesi É, Berkl Z, Ligethy L, Fekete-Kertész I, Csizmazia M, et al. Long-chain alkylthio cyclodextrin derivatives for modulation of quorum-sensing-based bioluminescence in Aliivibrio fischeri model system. International Journal of Molecular Sciences. 2024;25(13):7139. https://doi.org/10.3390/ijms25137139
24. Tongur S, Yıldız S. Toxicity tests using flurbiprofen, naproxen, propranolol, and carbamazepine on Lepidium sativum, Daphnia magna, and Aliivibrio fischeri. Desalination and Water Treatment. 2021;221:359–366. https://doi.org/10.5004/dwt.2021.27038
25. Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling atherosclerosis via selected nutrition. International Journal of Molecular Sciences. 2022;23(15):8233. https://doi.org/10.3390/ijms23158233
26. Vesnina AD, Frolova AS, Chekushkina DYu, Milentyeva IS, Luzyanin SL, et al. Gut microbiota and its role in development of chronic disease and aging. Foods and Raw Materials. 2026;14(1):174–197. https://doi.org/10.21603/2308-4057-2026-1-668
27. Chiu HF, Venkatakrishnan K, Golovinskaia O, Wang CK. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence. Molecules. 2021;26(7):2090. https://doi.org/10.3390/molecules26072090
28. Gates EJ, Bernath AK, Klegeris A. Modifying the diet and gut microbiota to prevent and manage neurodegenerative diseases. Reviews in the Neurosciences. 2022;33(7):767–787. https://doi.org/10.1515/revneuro-2021-0146
29. Shabbir U, Rubab M, Daliri EBM, Chelliah R, Javed A, et al. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients. 2021;13(1):206. https://doi.org/10.3390/nu13010206
30. Mahdi L, Graziani A, Baffy G, Mitten EK, Portincasa P. Unlocking polyphenol efficacy: The role of gut microbiota in modulating bioavailability and health effects. Nutrients. 2025;17(17):2793. https://doi.org/10.3390/nu17172793
31. Chekushkina DY, Milentyeva IS, Le VM, Prosekov AYu, Proskuryakova LA. The biopotential of trans-cinnamic acid. Bulletin of South Ural State University. Series “Food and Biotechnology”. 2024;12(2):87–95. (In Russ.) https://doi.org/10.14529/food240210
32. Dyshlyuk LS, Fedorova AM, Dolganyuk VF, Prosekov AYu. Optimization of extraction of polyphenolic compounds from medicinal lungwort (Pulmonaria officinalis L.). Journal of Pharmaceutical Research International. 2020;32(24):36–45. https://doi.org/10.9734/JPRI/2020/v32i2430807
33. Dushlyuk LS, Drozdova MYu, Loseva AI. Study on safety profile in extracts of Pulmonaria officinalis callus cultures and their phytochemical composition for the presence bioactive substances with the potential geroprotective properties. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(2):260–271. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-2-260-271
34. Fedorova AM, Dmitrieva AI, Dyshlyuk LS. Cultivation of wild medicinal plants of the SFD in vitro to accumulate the potential geroprotectors. Scientific papers of the North Caucasus Federal Scientific Center for Horticulture, Viticulture, and Winemaking. 2020;30:134–138. (In Russ.) https://doi.org/10.30679/2587-9847-2020-30-134-138
35. Chernin VV, Bondarenko VM, Chervinets VM, Bazlov SN. Helicobacter pylori as a part of microbiocenosis of mucosal microflora esophago- gastroduodenal zone in the norm and pathology. Experimental and clinical gastroenterology. 2011;(8):66–72. (In Russ.) https://elibrary.ru/TBZEHN
36. Aleshina ES, Karimov IF, Deryabin DG. Methods of bioluminescence testing. Orenburg: Orenburg State University; 2011, 56 p. (In Russ.) https://elibrary.ru/XNCTGL
37. Geldert C, Abdo Z, Stewart JE, A HS. Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. Journal of Applied Microbiology. 2021;130(5):1705–1720. https://doi.org/10.1111/jam.14897
38. Shimojo Y, Ozawa Y, Toda T, Igami K, Shimizu T. Probiotic Lactobacillus paracasei A221 improves the functionality and bioavailability of kaempferol-glucoside in kale by its glucosidase activity. Scientific reports. 2018;(8):9239. https://doi.org/10.1038/s41598-018-27532-9
39. Tkacz K, Połomska X, Turkiewicz IP, Wojdyło A. Enhancement of bioaccessibility and modulation of green tea phenolic compounds through pre-transformation by Lactobacillus and Bifidobacterium strains. Food Research International. 2025;217:116848. https://doi.org/10.1016/j.foodres.2025.116848




