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Abstract: This work describes the fundamentals of the mathematical theory of affinor metric structures and physical problems 
where these structures are used. Affinor metric structure is defined as an arbitrary 1–form having a radical of arbitrary rank, a certain 
Riemannian metric and a special field of automorphisms of tangent spaces connecting the exterior differential of this 1–form and 
a metric. Affinor metric structures are a generalization of almost contact metric structures and Kahlerian structures with a precise 
fundamental 2–form. At the end of the work, applications of affinor metric structures in physics are described. The purpose of this 
article is to demonstrate possibilities of application of the theory of affinor metric structures when solving various mathematical and 
physical problems. In particular, the use of such structures to search for closed curves with a nonzero circulation of a vector field and 
construction of submanifolds on which the exterior differential of some 1–form induced by a vector field is non-degenerated. Methods 
of Riemann geometry and theories of differential forms and mathematical analysis on manifolds were used. The relevance of the 
subject matter is due to the most common case of statement of the problem for some 1–form with radical of arbitrary dimension. While 
in classic case, physics and geometry consider only 1–forms with a zero radical. 
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INTRODUCTION 
The concept of an affinor metric structure arises as 

a natural generalization of almost contact and Kahlerian 
structures. However, in this paper we consider only 
the part of the mathematical theory of affinor metric 
structures, which is necessary to solve the following 
problem: Let us assume that M is a simply connected 
manifold of dimension at least 3, C is a closed curve in 
M and V is a vector field on a manifold M. Let dr denote 
a vector field of infinitely small shift, and α denote a 1–
form (V, dr), where (.,.) is a scalar product of vector 
fields on M. If a manifold M has dimension n, we obtain 
in local coordinates: 

α = (V, dr ) = V1dx1 +…+ Vn dxn . 

Let us consider a contour integral: 

∫C α = ∫C (V, dr). (1) 

Let us ask ourselves, when the integral (1) differs 
from zero for a given vector field V. 

Due to simple connectivity of a manifold M curve C 
is always a boundary of some two-dimensional  surface 
S. According to Stokes’ formula we get:

∫C α = ∫S dα. 

Here dα is an external differential of a 1–form α. 
Typically, in physics, this surface integral is calculated 
using parametrization of a surface S. However, this 
approach does not allow  to  answer  the  question  
about vanishing of the integral (1) for arbitrary non- 
closed 1–form α. First of all, a surface integral can  
not always be calculated analytically, using a surface 
parameterization. Secondly, if numerically calculated 
integral is arbitrarily close to zero, it does not follow that 
it is exactly equal to zero. The theory of affinor metric 
structures allows to solve this problem by studying 
location of an original curve on a manifold as regard  
to two distributions of tangent subspaces generated by  
a 1–form α itself, chosen on M by a Riemannian metric 
(scalar product) and some field of automorphisms of 
tangent spaces, called affinor. This set of objects will be 
called affinor metric structure. Affinor metric structure 
is a generalization of almost contact structures and 
almost Kahlerian structures with a precise fundamental 
2–form. The main advantage of affinor metric structure 
is that 1–form α is considered purely in general terms. 
It is not required that dα is a nondegenerated 2–form, 
and there is  no  any  requirement  concerning  parity  
of dimension of a manifold M. In the case of odd 
dimensional manifold M, affinor metric structure is 
exactly  the  almost  contact  metric  structure.  To date, 
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we have already obtained classification of invariant 
affinor metric structures for 3- and 4-dimensional 
homogeneous spaces (see. [1, 4]). Also, in [4], 
important results for spheres of arbitrary dimension 
were obtained. Moreover, in [3], a mathematical theory 
of affinor metric structures on vector bundles allowing 
the concept of an external differential of a 1–form is 
constructed and studied, and in [2], left-invariant affinor 
metric structures on Lie groups were studied. 

In the first two sections of this paper, we study 
the necessary properties of a radical of a 1–form and 
affinor metric structures. Section 4 describes and studies 
sublagrangian submanifolds, which are also needed to 
solve the claimed problem. Finally, in Section 5 we give 
a definitive answer to the question raised and describe 
physical applications of this problem. 

Radical of a 1–form 
Let us assume that M is a real manifold of dimension 

at least 3 and α is a global 1–form on M. Let IXT = T ( X,.) 
denote the inner product of a vector field X and a 
covariant-type tensor field T. 

Example 1. Let us  consider  an  Euclidean  space 
Rn with coordinates (x1,…, xn). Let us define a 1–form 
α = x1dx2. Exterior differential of this 1–form is as 
follows: 

dα = dx1dx2. 

This 1–form is regular. Its radical consists of vectors 
with coordinates (0, 0, x3,…, xn) and has a rank n-2, and 
a working bundle consists of vectors with coordinates 
(x1, x2, 0,…, 0). 

Example 2. Let us consider an Euclidean space R4 

with coordinates (x1, x2, x3, x4,). Let us define a 1–form 
α = x1x2dx3. Exterior differential of this 1–form is as 
follows: T 

dα= x2x1dx3 + x1dx2dx3. 

With x1 = x2 = 0 dα = 0 and radα = R4. For x1 ≠ 0, 
x2 ≠ 0, radical of a 1–form α has a rank 2 and consists of 

x2 y1 

vectors with coordinates (y1, – , 0, y4). Hence, it is 
1 

Definition 2.1. Radical of a 1–form α in a point 
x ∈ M is a vector subspace radαx = {v ∈ TxM : 
Ivdαx = 0}. 1–form α is called regular if tangent 
subspaces radαx have the same dimension at all 
points of M. 

The definition directly implies the following facts: 
1) Radical of a regular 1–form is a distribution of

tangent subspaces on M; 
2) 1 form is closed when, and only when its radical

coincides with the whole tangent bundle TM; 
3) External differential of a 1–form α is a symplectic

2–form on M when, and only when radα = {0}. 
Let radα denote a distribution of radicals of a regular 

1–form α on M and by a radical rank we shall mean 
the rank of this distribution. A key result for a radical 
rank of regular 1–forms is the following theorem, which 
proof can be found in [2]: 

Theorem 2.2. Let us assume that α is a regular non- 
closed 1–form on a real manifold of dimension n ≥ 3 and 
r is a rank of distribution radα. Then: 

1) If n is even, then r is even, too, and 0 ≤ r ≤ n – 2.
2) If n is odd, then r is odd, too, and 1 ≤ r ≤ n – 2.

Remark 2.3. Let us note that a 1–form with a radical 
of rank 0 on the even-dimensional manifold M defines 
a symplectic structure dα on M, and a 1–form with a 
radical of rank 1 on the odd-dimensional manifold has a 
contact structure on M. 

Let us assume that D is an orthogonal complement 
to a distribution radα with respect to some Riemannian 
metric on M. Distribution D is called a working bundle, 
and TM = D ⊕radα. Since the rank of a working bundle 
is a radical codimension and a difference of two arbitrary 
numbers of the same parity is always an even number, 
from Theorem 2.2 we obtain: 

Corollary 2.4. Working bundle D has an even  rank 
on the manifold of dimension of any parity. 

clear that α is not a regular 1–form. 
Let us assume that α is a regular non-closed 1–form 

on a manifold M with a working bundle D, and 
distribution D is holonomic. From the working bundle 
definition it follows that restriction of the exterior 2–form 
dα to the distribution D is non-degenerated. If a working 
bundle D is a holonomic distribution, then according to 
Frobenius theorem, there is a submanifold Q : D |Q = TQ 
in M. In this case, we obtain that restriction dα to a 
submanifold Q is a symplectic structure on Q, and Q is a 
symplectic submanifold. Thus, we obtain: 

Proposition 2.5. If there is a regular 1–form with 
a radical of rank r ≤ n − 2 and a holonomic working 
bundle on a  manifold M  of dimension n  ≥  3, then  
Q  contains a  symplectic submanifold of dimension  
n – r. 

From Corollary 2.4 it follows that the complex 
structure can be set on layers of a working bundle D for 
any non-closed regular 1–form. Moreover, it is possible 
to request that such a complex structure preserves 
restriction of selected Riemannian metric to a working 
bundle D. This allows to turn to definition of affinor 
associated with a 1–form. 

Affinor metric structures 
Let us assume that M is a real manifold of dimension 

at least 3, α is a regular non-closed 1–form on M, g is 
a Riemannian metric on M and D is a working bundle 
selected as an orthogonal complement to a radical of a 
1–form α. 

Definition 3.1. Affinor associated with a 1–form α, 
is a continuous field of automorphisms Ф of tangent 
spaces, satisfying the conditions: 

dα(X, Y) = g(ФX, Y), X , Y ∈ C1(TM), 

G(ФX, ФY) = g(X, Y), X, Y∈ C1(D). 
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We can obtain the following affinor properties 
immediately from the definition: 

Proposition 3.2. Let us assume that Ф is an affinor 
associated with a regular non-closed 1–form α C1 with a 
working bundle D on a manifold M. Then: 

1) ker Ф = radα;
2) Ф2 |D = –id, where id is an identity operator on D;
3) dα°Ф = dα;
4) dα(X, ΦX) ≥ 0, X ∈ C1(D).

Proof. Property 1 follows immediately from the 
definition of a radical of a 1–form α and definition 3.1. 
Let us prove a property 2. For any X, Y ∈ C1(D) we 
obtain: 

g(Φ2X, Y) = dα(ФX, Y) = −dα(Y, ФX) = 

= −g(ФY, ФX) = −g(X, Y) 

Since Riemannian metric g is non-degenerated on a 
working bundle D, we obtain Ф2X = −X. 

Let us now prove a property 3. For X ∈ radα, equality 
dα(ФX, ФY) = dα(X, Y) is satisfied by virtue of property 1 
and equalities from definition 3.1. For any X , Y ∈ C1(D), 
using property 2 and equality in definition 3.1, we 
obtain: 

dα(ФX, ΦY) = g(Ф2X, ΦY) = –g(X, ΦY) = 

= –g(ΦY, X) = –dα(Y, X) = dα(X, Y). 

Property 4 follows directly from the definition   3.1. 
The proposition is proved. 

Affinor Ф is easily described in a local basis of a 
tangent bundle TM. Let us assume that α is a regular 1–
form with a non-trivial radical on a manifold M of 
dimension n ≥ 3, g is a Riemannian metric on M and 
e1,…,  en  is  a  local  orthonormal  basis  of  a   tangent 
bundle in a coordinate neighborhood of the point x.  By 
Corollary 2.4, the working bundle rank is equal to 2l, 
l ≥ 1. Then in a local basis e1,…, en, affinor matrix Ф, 
associated with 1–form α is as follows: 

Ф = 







0
0

0
2lA

,

where A is a skew-symmetric matrix of order 2l with 
coefficients aij = dα(ei, ej), and matrix Ф is of the order n. 

Now we can define affinor metric structure on an 
arbitrary manifold. 

Definition 3.3. Affinor metric structure on a 
manifold M is four objects (α, D , Φ, g ), where α is a 
non-closed regular 1–form on M, D working bundle on 
M, Ф is an affinor associated with a 1–form α, and g is a 
Riemannian metric on M, based on which affinor Ф and 
working bundle D are defined. 

Let us note that almost Kahlerian structure with a 
precise fundamental 2–form on the even-dimensional 
manifold determines an affinor metric structure with the 
radical of rank 0, and a contact metric structure on the 
odd-dimensional manifold is an affinor metric structure 
with the radical of rank 1. An example of affinor metric 

structure is also an almost contact metric structure on an 
odd-dimensional manifold (see [1]). 

Let us assume that (α, D, Φ, g) is an affinor metric 
structure on a manifold M. Since Riemannian metric 
g sets an isomorphism between tangent and cotangent 
bundles, there is a vector field M on ξ : α = Iξ g = g(ξ,.). 
According to Riesz’s theorem concerning linear 
functional, the vector field ξ is unique. Let us call such 
vector field a characteristic vector field of affinor metric 
structure. Despite the fact that 1–form α is regular, the 
characteristic vector field ξ may vanish at points where 
α=0. It is also obvious that α(ξ) = g(ξ, ξ = | ξ |2. Generally, 
the characteristic vector field may either lie in radα or 
not belong radical. 

Definition  3.4. Affinor  metric  structure  (α, D, Φ, 
g) with a characteristic vector field ξ is called strict if
ξ ∈ radα.

The properties of strict affinor metric structures are 
studied in detail in [3]. Here we need only the following 
property of these structures: 

Proposition 3.5. Let us assume that (α, D, Φ, g) is 
a strict affinor metric structure on a manifold M with 
dimension of not less than 3. Then, working bundle D 
lies in the core of a 1–form α. 

Proof. Let us assume that ξ is a characteristic vector 
field of strict affinor metric structure. It follows from the 
equality α(X) = g(ξ, X), X ∈ C1(TM) that the vector field 
ξ is orthogonal to ker α with respect to a metric g. From 
the definition of a working bundle D, it follows that 
distributions D and radα are orthogonal with respect to 
metric g. Since codimension of the 1–form core is equal 
to 1 and ξ ∈ radα, radical of a 1–form α may not lie in 
ker α. We obtain that the working bundle D lies in the 
orthogonal complement of the characteristic vector field 
ξ. But this orthogonal complement is ker α. We obtain 
that D ⊆ ker α, and the proposition is proved. 

For further purposes, we need an invariant definition 
of 1–form external differential on a manifold. Let X(f) 
denote the effect of the vector field X on a function F, 
and [X, Y] denote Lie bracket of vector fields X and Y. 
Let us assume that α is a nontrivial 1–form on a manifold 
M. Then, for any vector fields X and Y on M

2dα(X, Y) = X(α (Y)) − Y(α (X)) − α([X, Y]). (2) 

Proposition 3.6. Working bundle of a strict affinor 
metrical structure can not be a holonomic distribution. 

Proof. Let us assume that (α, D, Φ, g) is a strict 
affinor metric structure on a  manifold  M.  Suppose 
that the working bundle D is a holonomic distribution. 
By Frobenius theorem, a holonomic distribution is 
involutive. Owing to Proposition 3.5, for any X, Y ∈ C1(D) 
equation (2) takes the form: 

2dα(X, Y) = −α([X, Y]). 

Since  the  distribution  D   is   involutive,   then 
[X, Y] ∈ D ⊆ ker α. We obtain that dα |D ≡ 0. But this 
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contradicts nondegeneracy of dα on a working bundle. 
Consequently, a working bundle is nonholonomic, and 
the proposition is proved. 

In the case where a working bundle D of a strict 
affinor metric structure is completely nonholonomic, we 
obtain a pair (D, g) is sub-Riemannian structure on a 
manifold M. Thus, we obtain: 

Proposition 3.7. Any strict affinor metric structure on 
a manifold M with a completely nonholonomic working 
bundle induces a sub-Riemannian structure on M. 

Letusnotethattheconceptofaffinorisageneralization 
oftheconceptoforthogonalalmostcomplexstructure(see 
[5, Chapter 9]) for real manifolds of arbitrary dimension. 
If a working bundle D of nonstrict affinor metric 
structure on a manifold M is a holonomic distribution, 
then there is an integral submanifold Q : D |Q = TQ 
in M, and restriction of affinor Ф to a submanifold Q 
sets an almost complex structure on Q. It follows that 
existence of a holonomic working bundle of affinor 
metric structure on a manifold of arbitrary dimension 
implies existence of the almost complex submanifold, 
as in case of integrability of almost complex structure - 
of complex submanifold on this manifold. 

An  important  class  of  affinor  metric  structures 
is so-called K-affinor metric  structures.  Affinor 
metric structure (α, D, Φ, g) is called K-affinor if its 
characteristic vector field ξ is a Killing vector field, i. e. 
L g = 0. Here L g is a derivative of a Lie metric g along 

problem stated in Section 1, let us turn to study of such 
submanifolds. 

Sublagrangian submanifolds 
Let us assume that M is a real manifold of 

dimension n, (α, D, Φ, g) is an affinor metric structure 
on M, and a working bundle D is a nonholonomic 
distribution on M.  From  Theorem  2.2  it  follows 
that with n < 5 the distribution D may only have a 
rank 0, 1 or 2. By nontrivial submanifolds we shall 
mean manifolds M of submanifold  of  dimension 
from 2 to n – 1. If the rank of a working bundle ≤ 2, 
M does not contain any non-trivial submanifolds 
tangential to distribution D. Therefore, determination 
of sublagrangian submanifolds requires to consider 
manifolds of dimension at least 5. 

Definition 4.1. Sublagrangian submanifold for 
affinor metric structure (α, D, Φ, g) on a manifold M 
of dimension ≤ 5 is a maximum nontrivial submanifold 
Q : TQ ⊂ D and dα |Q ≡ 0. 

Recall   that   the   definition   of   working    bundle 
implies that the  restriction  dα  to  the  distribution  D 
is non-degenerated, and therefore, dimension of a 
sublagrangian submanifold cannot be the same as the 
rank of a working bundle. Furthermore, the definition 4.1 
does not require that working bundle is nonholonomic 
distribution. Thus, the concept of a sublagrangian 
submanifold is defined for any affinor metric structure. 

ξ ξ In view of Corollary 2.4, working bundle always has an 
the vector field ξ. Let us summarize the important results 
for K-affinor metric structures whose proof is given in 
[2] and [3].

Theorem 3.8. Suppose that (α, D, Φ, g) is a K-affinor
metric structure with a characteristic vector field ξ on a 
manifold M of dimension at least 3. Then: 

1) Φ = ∇ xi, where ∇ is a Levi-Civita coherence of
Riemannian metric g; 

2) For any vector field X ∈ C1(D), transversal to a
characteristic vector field ξ, the sectional curvature in a 
two-dimensional direction {ξ, X} is equal to 1; 

3) If the metric g is Einsteinian, its Ricci curvature
and scalar curvature are positive; 

4) If the metric g is Einsteinian, then the    manifold
M is compact and has a finite first fundamental group. 

Theorem 3.9. Let us assume that (α, D, Φ, g) is a K-
affinor metric structure with a characteristic vector 
field ξ, ∇ is a Levi-Civita coherence of metric g, and 
L  is a Lie derivative in the direction of a vector field ξ. 
ξ 

Then the following conditions are equivalent: 
1) K-affinor metric structure is strict;
2) The characteristic vector field ξ is a geodesic

vector field, i. e. ∇ ξξ = 0; 
3) L α=0

ξ 

In the case where the working bundle D on a manifold 
M of an affinor metrical structure is not holonomic, M 
may contain submanifolds tangential to the distribution 
D, in which dα ≡ 0. Since it is necessary to solve the 

even rank. Definition 4.1 implies an initial assessment 
of  dimension  of  sublagrangian  submanifolds.  If  2l 
is a rank of working bundle, and k is a dimension of 
sublagrangian submanifold, then 2 ≤ k ≤ 2l − 1. In the 
case where the 1–form radical rank α is 0, sublagrangian 
submanifold is the classical sublagrangian submanifold 
for a symplectic structure dα. Now let us obtain  a 
more accurate estimate of dimension of sublagrangian 
submanifolds. 

Theorem 4.2. Let us assume that (α, D, Φ, g) is an 
affinor metric structure on a manifold M of   dimension 
≤ 5, and working bundle D has the rank 2l ≤ 4. Then, 
dimension of a sublagrangian submanifold for this 
affinor metric structure can not exceed l. 

Proof. Let assume that Q is a sublagrangian 
submanifold in M and k is dimension of submanifold 
Q. Using definitions 3.1 and 4.1 for any X, Y ∈ C1(TQ),
we obtain:

g(ΦX, Y) = dα(X, Y) = 0 

We obtain that distributions TQ and ФTQ are 
orthogonalasregardtoametricg.WhereasTQ∩ΦTq={0} 
and rank(TQ) = rank(ΦTQ), we obtain: 

rank(TQ ⊕ ΦTq ) = 2k ≤ rank(D) = 2l. 

Finally, we obtain k ≤ l, and the theorem is proved. 

Corollary 4.3. If the rank of a working bundle of 
affinor metric structure on a manifold M is equal to   2, 
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then M does not contain sublagrangian submanifolds for 
this affinor metric structure. 

Remark 4.4. If Q is a sublagrangian submanifold 
for an affinor metric structure (α, D, Φ, g), then for any 
nontrivial submanifold P ⊂ Q dα |P ≡ 0 is valid. 

It is quite simple to obtain sublagrangian 
submanifolds for strict affinor metric structures. It is 
enough to take a maximal submanifold of appropriate 
dimension, tangential to a working bundle. 

Theorem 4.5. Let us assume that (α, D, Φ, g) is a 
strict affinor metric structure on a manifold M and Q is 
a maximum nontrivial submanifold M, tangential to a 
distribition D. Then Q is a sublagrangian submanifold 
for this affinor metric structure. 

Proof. In order to show that Q is a sublagrangian 
submanifold, it is sufficiently to prove that dα |Q ≡ 0. 
According to Proposition 3.5, TQ ⊂ D ⊆ ker α. Since 
the distribution TQ is involutive, for any X, Y ∈ C1(TQ) 
we obtain [X, Y] ∈ker α. Using equation (2) of section 
3, we obtain: 

2dα(X, Y) = −α([X, Y]) = 0 

Thus, determination 4.1 is satisfied, and the theorem 
is proved. 

Corollary 4.6. Let us assume that (α, D, Φ, g) is a 
strict affinor metric structure on a manifold M with a 
working bundle of rank 2l ≤ 4. Then dimension of any 
submanifold in M tangential to a distribution D may not 
exceed l. 

Submanifolds of dimension 2 tangential to a working 
bundle are of particular interest. Let us assume that M 
is a simply connected manifold of dimension at least 5 
and (α, D, Φ, g) is a strict affinor metric structure on M 
with a working bundle of rank 2l ≤ 4. Since any closed 
curve in a simply connected manifold is the boundary 
of a two-dimensional surface, we obtain that any closed 
curve on M generates a two-dimensional submanifold. 
Let us assume that C is a closed curve on M, tangential 
to working bundle D, such curves are called sublegendre 
curves and S is a two-dimensional submanifold such 
that its boundary is C. Let us assume that C is a   vector 
tangential to a curve C. It’s obvious that Ċ ∈ C1(D). The 
affinor properties obtained in Proposition 3.2 imply that 
the affinor Ф is invariant over the distribution D and is a 
linear automorphism of a working bundle D. It follows 
that ФĊ ∈ C1(D), vector fields Ċ and ФĊ are transversal 
at all points where Ċ ≠ 0, and submanifold S is tangential 
to a distribution D. From Theorem 4.5 it follows that S 
is contained in sublagrangian submanifold or coincides 
with it. Thus, we obtain the following result: 

Theorem 4.7. Let us assume that M is a simply 
connected manifold of dimension at least 5, and (α, 
D, Φ, g) is a strict affinor metric structure on M with a 
working bundle of rank at least 4. Then, M contains a 
sublagrangian submanifold of dimension at least 2, and 
any closed curve on M tangential to a distribution D, is a 

boundary of a two-dimensional submanifold contained 
in a sublagrangian submanifold. 

Remark 4.8. From Theorem 4.7 it follows that any 
closed curve in a simply connected manifold tangential 
to a working bundle of a strict affinor metrical structure 
is always contained in sublagrangian submanifold. 

Let us assume that (α, D, Φ, g) is a nonstrict affinor 
metric structure with a characteristic vector field ξ. Let ξ 
denote projection of a vector field ξ on a working bundle D 
and ξ0 denote projection of a vector field ξ on radα. Then, 
ξ = ξ + ξ0, and for any vector field the following is valid X 

dα(ξ, X) = dα(ξ, X) + dα(ξ0, X) = dα(ξ, X). 

Thus, study of non-strict affinor metric structures is 
reduced to the case when characteristic vector field lies in 
a working bundle. Further, let us assume that ξ ∈ C 1(D). 
Let E denote a distribution D ∩ ker α. A working 
bundle D is decomposed into an orthogonal sum of 
a line generated by a characteristic vector field ξ and 
distribution E. Let us assume that S is a two-dimensional 
submanifold tangential to a distribution E. For any X, 
Y ∈ C1(TS) we obtain X ∈ ker α, Y ∈ ker α, [X, Y] ∈ ker α. 
Using equation (2) of section 3, we obtain: 

2dα(X, Y) = −α([X, Y]) = 0 

Whence dα |S ≡ 0 and S is contained in a sublagrangian 
submanifold. 

Let us assume that S is a two-dimensional 
submanifold tangential to a distribution D so that the 
characteristic vector field ξ is tangential to S. Since the 
codimension of the distribution E in the distribution D 
is always equal to 1, there is a vector field X : X ∈ C1(E) 
in a manifold S. Then vector fields ξ and X form an 
orthogonal basis of the tangent bundle TS. Since α(X) = 0, 
from equation (2) in the section 3, we obtain: 

2dα(ξ, X) = −X(α(ξ )) −α([ξ, X]). 

Let us assume that L α is a Lie derivative of a tensor 
x 

field α in the direction of a vector field X. There is an 
expression of the Lie derivative of a 1–form α through 
Lie brackets of vector fields (see [5, Chapter 1]): 

( L α )(Y) = X(α(Y)) −α([X, Y]), 
x 

for any vector fields X, Y is valid. Using this expression, 
we obtain: 

2dα(ξ, X) = −X(α(ξ)) −α([ξ, X]) = −( L α). 
x 

It  follows  that  dα  |S  ≡  0  when,  and  only  when 
( L α)(ξ) = 0 on S. Thus, we obtain the following end 

x 
result: 

Theorem 4.9. Let us assume that (α, D, Φ, g) is a 
affinor metric structure on a manifold M of dimension 
at least 5 with a characteristic vector field ξ : ξ ∈ C1(D) 
and S is a two-dimensional submanifold of a working 
bundle D. Then: 

1) If a submanifold S is tangential to a   distribution
E = D ∩ ker α, then dα |S ≡ 0; 
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2) If the characteristic vector field ξ is tangential
to S and X is a vector field on S orthogonal to ξ with 
respect to a metric g, then dα |S ≡ 0 when, and only when 
( L α)(ξ ) = 0 on S. 

x 
Now, we have reviewed all the properties of affinor 

metric structures needed to solve the problem posed in 
Section 1. 

Physical applications of affinor metric structures 
Let us assume that M is a simply connected manifold of 
dimension at least 3, V is a vector field on M and g is a 
Riemannian metric on M. Then a global 1–form α = 
g(V,.) is defined on M. In local coordinates, the 1–form α 
looks like g (V, dr), where dr  is a vector field of 
infinitely small shift. Let us define the following 
functional on the space of all closed curves: 

AV : AV (C) = ∫C α, 

where C is a closed curve on a manifold M. The 
meaning of this functional on a curve is used in various 
branches of physics. In mechanics AV (C) this is a work, 
done by a force that moves a body over a closed path C. 
In electrodynamics AV (C), this is a work of the 
electromotive force circulation in a closed conductor C. 
In the string theory, each elementary particle is 
represented as a curve of finite length in the Calabi-Yau 
space. For a particle identified with a closed curve C, AV 
(C) this is the effect of a vector field V, for example, a
gravitational field on a particle. There is a need to
determine curves for which a functional AV  takes non-
zero values.
Since the manifold M is simply connected, for any
closed curve C given in an interval [a, b], there exists a
homotopy F of a curve C at the point 0x : 

F ( s , t ) : 0 ≤ s ≤ 1, a ≤ t ≤ b, F (1, t ) = C (t ), F (0, t ) = x0 

Then, the image of a two-dimensional space [0,1]×[ a , b] 
under the effect of mapping F is a two-dimensional 
surface in M whose boundary is a curve C. Let S denote 
this surface. According to Stokes' formula we obtain: 

Av(C) =  ∫cα=∫s d α 
If the restriction of a 1–form α to S is a closed 1–form, 
then AV (C) = 0. If α is a non-closed regular 1–form on 
M, then, defining by D the orthogonal complement to a 
distribution radα  with respect to a metric g and 
determining affinor Ф as in Section 3, we obtain an 
affinor metric structure (α, D, Φ, g) with a working 
bundle D and a characteristic vector field ξ : α ( X ) = g 
(ξ, X ), X ∈ C1(TM). Let us denote by 1e  and 2e

projections of vector fields 
s∂

∂ and
t∂

∂ on a working 

bundle D, respectively. If e1  = 0 or e2  = 0, then dα 
| s ≡0 and AV (C) = 0. If e 1 ,e2 ∈ ker α, then, by virtue 
of clause 1 of Theorem 4.9, dα | s≡0 and AV (C) = 0. 
Furthermore, from Theorem 4.7 it follows that with 
Φξ = 0 the surface S is contained in a sublagrangian 
submanifold, and AV (C) = 0. Thus, we obtain: 

Proposition 5.1. If a closed curve C on a manifold M is a 
boundary of a two-dimensional surface S, then α is a non-
closed regular 1–form on M, and one of the conditions is 
satisfied: 

1) S contains a vector field that lies in the radical of
a 1–form α;

2) S contains a couple of transversal vector fields,
projections of which lie in the core of the 1–form
α;

3) 1–form α creates a strict affinor metric structure,
then AV (C) = 0. 
It remains to consider the case then Φ ξ ∈ C1(T), and 
restriction of the characteristic vector field ξ to S is a 
vector field on S. In this case, there is a vector field 
ξ1:g(ξ,ξ1)=α(ξ1)=0  on S. From the clause 2 of Theorem 
4.9, it follows that  

∫sdα=∫w(
ξ
L α)(ξ)dsdt=  ∫wg(Ф ξ, ξ1)dsdt.

Here W is a range of variation of parameters s  and t ,
x
L

 α is a Lie derivative of a 1–form α in the direction of a 
vector field X. Note that if (Ф ξ, ξ1), then g(Ф ξ, ξ1) = 
g(ξ , ξ ) ≥ 0 (see Definition 3.1), and hence AV (C) > 0. 
In addition, in this case, the restriction of affinor Ф to S 
is an almost complex structure on S. Since any almost 
complex structure on a two-dimensional manifold is 
always integrable (see [5, Chapter 9]), the restriction of 
affinor Ф is a complex structure on S. The physical 
meaning of the condition Ф ξ= ξ1 is that an angle 
between the vector field V on a curve C and the tangent 

vector field 
•
C  does not exceed 90 degrees at any point 

of the curve. Let XD  denote the projection of a vector 
field X on a working bundle D. Now we obtain the 
following result: 

Proposition 5.2. Let is assume that (α, D, Φ, g) is an 
affinor metric structure on a manifold M with a 
characteristic vector field ξ ∈ C1(D). If a closed curve 
C is the boundary of a two-dimensional surface S, and 
there is a pair of orthogonal vector fields X, Y: XD  
= ξ,ФXD=YD  on S, then AV (C) > 0. 
Let us note that this proposal is not applicable in case 
where the function g(Ф ξ, ξ1) takes both positive and 
negative values on the surface S. In this case, it 
requires a different criterion of variation from zero for 
the functional AV . Let us assume that C is a any closed 
curve defined in an interval [a, b], S is a two-
dimensional surface, which boundary is a curve C, and 
restriction dα to S is a non-degenerated exterior 2–form 
on S. In this case S is a symplectic submanifold in M. 
Let us assume that {ε n} is a infinitely small sequence 
such thatε n> 0,a + ε n < b −εn  for all real n. Let nd
denote an interval [ a + ε n , b −εn ], and δn - its length. 
It's obvious that 

∞→n 
lim {δ n } = b − a.

Furthermore, there are sequences {maxn} and {minn}, 

where maxn=max t∈d α(
•
C t)), minn=min  t∈d α(

•
C t)). 
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We obtain: 

min nδ n≤ ∫dn α (C (t )) dt ≤ max n δn . 

From here: 

∞→n 
lim  {min nδ n}≤ ∫C α≤

∞→n 
lim {max n δn}.

Since the sequence {δ n} is bounded, ∫C α=0 when, and 
only when the sequences {maxn} and {minn} are 
infinitely small. Thus, we obtain the following criterion: 

Proposition 5.3. If a closed curve C on the manifold M is 
the boundary of the two-dimensional surface S, α is a 
non-closed regular 1–form on M, and a restriction dα to S 
is a symplectic structure on S, then AV (C) = 0  when, and 
only when 

∞→n 
lim {minn} = 

∞→n 
lim {maxn}= 0.

Remark 5.4. The criterion of Proposition 5.3 is applicable 
to any closed curve C, even on multiply connected 
manifold, when the curve C is not a boundary of the two-
dimensional surface. 
Thus, we have considered all the cases, and the problem 
posed at the beginning is solved. 
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