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INTRODUCTION
Wide assortment of brewery products and their 

multicomponent composition refers them to the segment 
of difficult-to-identify goods. Their authentication is 
aimed at protecting consumers and manufacturers’ 
rights [1].

One of the strategically important tasks achievable 
by multidisciplinary science-intensive approaches is the 
search for objective identification criteria with a high 
degree of authenticity assessment of brewery products [2].

Molecular and genetic research methods can provide 
the technological process of DNA authentication of beer 
brands [3], thereby expanding the complex scheme of 
brewery products identification, traditionally based on 
documentary, visual, sensory and physical and chemical 
analyses [4].

Beer brands DNA authentication is a technological 
process of the authenticity verification by the gene 
identification of Hordeum vulgare barley malt, or 
its substitutes, as well as its key ingredients – hops 
and yeast, by molecular genetic analysis of residual 
quantities of nucleic acids extracted from the cellular 
debris of the products [3].

The analysis of scientific and methodological 
approaches points to the applicability of DNA 
technologies for detecting counterfeit and falsified 
brewery products.
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modified for extraction of nucleic acids from beer 
samples [3]. The method includes the following 
characteristic peculiarities: stage enzymatic hydrolysis 
of polysaccharides and polypeptides of dissolved 
lyophilisate, multiple sedimentation and resursuspension 
of nucleoproteid complex, RNA removal followed by 
DNA extraction by organic solvents, and additional 
DNA purification by magnetic particle adsorption.

Figure 1 demonstrates stages of DNA extraction 
according to the modified method. In particular, 
enzymatic hydrolysis of polysaccharides by α-amylase 
(Bacillus licheniformis) takes 3 h instead of 1 h, when 
DNA is extracted from wines [3, 5]. The time of 
enzymatic hydrolysis of polypeptides by proteinase 
K (Tritirachium album) is also increased up to 3 h. 
The sedimentation time of non-hydrolysed cellular 
debris by centrifugation at 8000 g is reduced to 1 min 
instead of 15 min when DNA is extracted from wines. 
At the stage of DNA extraction from the lyophilised 
beer powder, the sedimentation of the nucleoprotein 
complex is carried out by mixing the supernatant with 
two volumes of cold absolute ethanol instead of two 
volumes of cold isopropanol. At the next stage we mixed 
a solution of unpurified DNA with an equal volume 
of 70% ethanol. The maturing of the mixture at 0°C 
takes 3 min instead of 10 min, as with wines. During 
the subsequent nucleoprotein complex sedimentation, 
along with the stepwise addition of 10 μL of 3M 
sodium acetate and two volumes of cold isopropanol 
to the pre-transferred transparent supernatant, 3 μL of 
Ethachinmate linear polyacrylamide is added. After 
RNA removal and deproteinisation, the sedimentation 
of purified DNA is carried out without adding 70% 
ethanol. (Сf. DNA extraction from wines involves in 
the nucleic acids sedimentation in 0.2 M NaCl and two 
volumes of cold ethanol, followed by washing with 70% 
ethanol). Later, nucleic acids precipitate, resuspended in 
the elution buffer, undergoes an additional purification 
by adsorption on magnetic particles, which is one of the 
key modification elements of the method for extracting 
residual DNA of beer raw materials [3].

The ability of magnetic particles to bind DNA 
reversibly and easily be deposited from the suspension in 
the magnetic field ensures high quality of nucleic acids 
purification and their preservation. Magnetic particles, 
as a rule, are a paramagnetic core with a highly 
developed surface covered with a polymer film with 
exposed covalent-bond carboxylic groups. Magnetic 
tripods, used in manual and automated modes, are made 
of neodymium magnets resistant to demagnetisation.

The additional purification by adsorption on magnetic 
particles of the modified method of extraction of nucleic 
acids from beer samples actually took the place of 
polymer polyvinylpyrrolidone widely used to reduce the 
inhibitory effect of polyphenols on PCR [3, 7–10].

Approaches to beer DNA authentication. Genetic 
targets, used as molecular markers for malting barley 

varieties identification, can also be analysed for 
commercial beer DNA authentication (Table 1) [3].

Polygalacturonase is an enzyme that performs 
hydrolytic cleavage of α-1,4-glycoside bonds in 
pectin. The DNA target was the locus of its gene 
(HvPG1) еamplified by a corresponding pair of primers 
constructed by Pulido et al. based on the analysis of 
expressed sequence tag (EST) deposited in GenBank 
(A/N: EF427919) [11]. The generated PCR products a 
and b of the HvPG1 gene locus detected in the barley 
and beer samples were 89% and 79% identical to the 
previously deposited nucleotide sequence mRNA 
polygalacturonase Hordeum vulgare. Among the studied 
Japanese barley varieties, only the high quality ‘Ryofu’, 
recommended for brewing, generated two discrete 
fragments (a, b), like most American and Australian 
barley varieties, except for Stimling (Table 2). All 
the beer samples were marked only by the country of 
manufacture. They generated the PCR product b and 
more than half of the samples generated the additional 
fragment a (Table 2). The analysed DNA target was 
included in the group of DNA markers of identification 
and differentiation of beer samples, but did not correlate 
with the indicators of beer quality [3].

Hordeins are polymorphic proteins of barley grain 
coded by 7 HrdA-G loci which are localised in the 
short arm of the 5th Hordeum vulgare chromosome 
[12, 13]. Due to the established connection of the 
hordein-coding loci alleles with brewing qualities 
of barley grain, this block of targets is a priority for 
molecular and genetic analysis [14, 15]. From the three 
analysed loci (HrdA, HrdB and HrdC) only one (HrdC) 
was able to identify a single sample of beer out of 22 
investigated by the presence of a specific PCR product e  
(Table 2) [3]. However, high variability of HrdA locus 
(up to 90% identity of nucleotide sequences of compared 
barley varieties with corresponding reference sequence 
(GenBank A/N: AF474373) indicates a certain potential 
of DNA authentication of beer on the analysed target 
by sequencing the amplified locus. The block of DNA 
targets under study also did not correlate with the 
indicators of beer quality [3].

Amylosis content in barley starch influences the 
quality of malt barley. Therefore, waxy-barley varieties 
may be a preferred option for their malting in brewing 
because starch with low amylosis content is more 
susceptible to enzymatic hydrolysis [18]. Molecular 
mechanism is embedded in Hordeum vulgare waxy-
genes located on 7 HS chromosome. They lead to the 
elimination of granule-bound starch synthase (GBSS)
[18, 19]. Primers selected for Waxy-locus amplification 
had the positive control status due to generation of 
specific PCR product in all the samples of barley and 
beer [3]. Their sequeneed  nucleotide DNA sequences 
were identical to each other and showed 98% identity 
to the corresponding reference Hordeum vulgare subsp. 
Vulgare sequence, previously deposited to GenBank 
(A/N: X07931) [20].
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1. LIOPHILISED BEER POWDER RESUSPENDING 
 

Lyophilisate dissolving in 500 μl of resuspending buffer 
 (0.1M Tris-HCl (pH 8.0), 0.1 MNaCl) 

2. POLYSACCHARIDES ENZYMATIC HYDROLYSIS 
 

Beer suspension processing with 100 μl of thermostable α-amylase (Bacillus licheniformis) 
 

Incubating the produced mixture at 80°C for 3 h 
3. POLYPEPTIDES ENZYMATIC HYDROLYSIS 

 
Suspension processing with 100 μL of proteinase K (Tritirachium album) with 0.2% SDS 

 
Incubating the produced mixture at 55°С for 3 h 

4. NON-HYDROLYZED CELL DEBRIS SEDIMENTATION 
 

Centrifugation at 8000 g for 1 min at 40°C 
 

Supernatant transfer to a new tube 
5. NUCLEOPROTEID COMPLEX SEDIMENTATION 

 
Mixing the supernatant with two volumes of cold absolute ethanol 

and holding the mixture at 0°C (on ice) for 15 min 
 

Centrifugation at 8000 g for 15 min at 4°C 
6. NUCLEOPROTEID COMPLEX RESUSPENDING 

 
Sediment resuspending in 300 μL of elution buffer (0.1M Tris-HCl (pH 8.0), 0.1M EDTA) 

7. NUCLEOPROTEID COMPLEX SEDIMENTATION 
 

Mixing the crude DNA solution with an equal volume of cold 70% ethanol 
and holding the mixture at 0°C (on ice) for 3 min 

 
Transfer the clear supernatant to a new tube and stepwise addition of 10 μL of 3M sodium acetate, 3 μL of linear 

polyacrylamide Ethachinmate and 2 volumes of cold isopropanol 
 

Centrifugation at 8000 g for 15 min at 4°C 
8. NUCLEOPROTEID COMPLEX RESUSPENDING 

  
Sediment resuspending in 300 μL of elution buffer (10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA) 

9. RNA REMOVAL 
 

Suspension Treatment with RNAse A at 55°C for 30 min  
10. DEPROTEINISATION 

 
Extraction with equal volume of neutral phenol 

 
Recovery of the aqueous phase by centrifugation at 8000 g for 15 min (4°C) 

 
Extraction with an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1) 

 
Recovery of the aqueous phase by centrifugation at 8000 g for 15 min at 4°C 

11. SEDIMENTATION OF PURIFIED DNA 
 

Repeat stage 7 without adding 70% ethanol 
12. RESUSPENDING OF SEDIMENTAL DNA 

 
Sediment resuspending in 125 μL of elution buffer (10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA) 

13. ADDITIONAL STAGE OF DNA PURIFICATION BY ADSORPTION ON MAGNETIC PARTICLES 
 

Figure 1 Stages of DNA extraction from lyophilised beer powder
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Hemicelluloses are vegetable homo- and 
heteropolysaccharides, which are an integral part of the 
endosperm cell walls. The highest content of xylanes 
was reported to be among the main components of 
hemicellulose [21]. The malt barley softens as a result of 
the decomposition of the cell wall. Xylanase is involved 
in the degradation of xylanes to xylooligosarachides, 
whose gene locus was used as a target for primers 
originally designed for DNA analysis of rice samples [3]. 
It is noteworthy that among the 16 varieties of barley, 
only three varieties (Metcalfe, Nishinohoshi and Ryofu) 
showed a positive amplification signal (Table 2). At the 
same time, due to possible obtaining inconclusive data, 
the authors [3] presented neither the results of PCR of beer 
samples, nor data on amplification of the HrdB locus. 

Barley Z proteins are the main beer protein which 
influence beer quality, especially foam stability [22–
24]. In addition, Z4 and Z7 proteins can be used as 
positive and negative markers of foam stability [25]. 

DNA-markers of foam stability developed by Limure 
et al. were also used in by Nakamura et al. for barley 
varieties identification and beer DNA-authentication 
[3, 25]. Identifying and differentiating barley and 
beer samples procedure by the gene locus, encoding 
proteins Z4 and Z7 differ.  In the first case PCR 
analysis is performed by interpreting three discrete 
PCR products (h, i-a, i-b), and in the second –by the 
presence or absence of a specific fragment j.

Based on the analysis, the authors recommended the 
further use of the tested primers for amplification of the 
analysed gene loci [3]. In addition, a negative correlation 
of the amplified PCR product h gene locus encoding 
Z7 protein with beer bitterness, as well as a positive 
correlation of PCR product i-a similar locus with foam 
stability (Table 1) were revealed. 

Many enzymes, incl. α-amylase and β-amylase, 
are activated in the malting process [26, 27]. Their 
substrates are amylosis and amylopectin or products 

Table 1 Genetic targets used as molecular markers for brewing barley varieties identification and beer DNA authentication 

Target PCR product Primer sequence Correlation (+/-) Source
Polygalacturonase (HvPG1) a F: 5/-GACAGAATGGCGTTCAAGAACAT-3/

R: 5/-AGCAAGTTGCCTTCCAGCTTGAT-3/
N/A [3, 11]

b N/A
Hordein A
(HrdA)

с F: 5/-AGATAGCGTTTTGAAGGTCAC-3/

R: 5/-TAGACCTGCAATAATTTCCA-3/
N/A [3, 16]

Hordein B
(HrdB)

d-1 F: 5/-TCACACATAAGGTTGTGTGAC-3/

R: 5/-CAAGCTTTCCCACAACAACCA-3/
N/A [3, 17]

d-2 N/A
Hordein C
(HrdC)

e F: 5/-AATTTAAACAACTAGTTTCGGGTGG-3/

R: 5/-CAAGCTTTCCCACAACAACCACCAT-3/
N/A [3, 16]

Barley starch synthase
(waxy)

f F: 5/-CAATTCATCCGATCACTCAATCAT-3/

R: 5/- CAGGCCGACAAGGTGCTG -3/
N/A [3, 16]

Xylanase g F: 5/-GGTACAACGTCGCGTCGG-3/

R: 5/-CGTGTACCAGACGGTCCAGATACAGC-3/
N/A [3, 21]

Protein Z7 h F: 5/-GGTCACATGACGTGTATTAATCTCC-3/

R: 5/-CGTTGGTGGCAGCAGACTCGGGG-3/
–* [3, 24]

i-a +**
i-b N/A

Protein Z4 j F: 5/-GAGACGTGTAGTAATCTTCG-3/

R: 5/-GCGAGCACAAATTGCACCACC-3/
–*** [3, 24]

α-amylase k F: 5/-AAGGTCTCGTGTCGATCCCAAGGAGGC-3/

R: 5/-CTAAGCCTCGTCTTCGTCCCC-3/
N/A [3]

Barley lipoxygenase
(LOX1)

l F: 5/-GCAACGGAGGGAGTAAAACA-3/

R: 5/-CGATGGCTTGGACCAATTAC-3/
+**** [3, 34]

Barley yellow mosaic virus
(rym5)

m F: 5/-GAGTCGTCACAACGTACCTTGC-3/

R: 5/-GTGGCTGTAAATAGGCTAAGGCC-3/
N/A [3, 34]

Barley powdery mildew 
(mlo)

n F: 5/-TAGCAATCACGGTCACGTCAAC-3/

R: 5/-CCGCAAGGCTGCTATGAAAAGGG-3/
N/A [3, 34]

o N/A
Barley trypsin inhibitor
(Itr1)

p F: 5/-CAACTAACAGAAAGTCAGAAAGCAC-3/

R: 5/-CACAATACTGAAAATACTCTGATGC-3/
–***** [3, 37]

Barley β-glucanase
(HvCslF6)

s F: 5/-GCCAAGACCAAGTACGAGAAGC-3/

R: 5/-TGTTCTTGGAGAAGAAGATCTCG-3/
N/A [3, 40]

–* a negative correlation of the amplified PCR product h of the gene locus encoding the protein Z7 with beer bitterness 
+** a positive correlation of the amplified PCR product i-a of the gene locus encoding the protein Z7 with foam stability 
–*** a negative correlation of the amplified PCR product j of the gene locus encoding the protein Z4 with the detectable PCR product h of the gene 
locus encoding the protein Z7 
+**** a positive correlation of the amplified DNA target with beer taste saturation 
–***** a negative correlation of the detected DNA matrix with the saturation of beer taste 
N/A not applicable
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of their hydrolysis. Primers developed on the basis 
of nucleotide sequence of the gene locus encoding 
α-amylase initiated the amplification of PCR product k 
in most of the barley varieties and beer samples (Table 2) 
[3, 28]. It is noteworthy that the amino acid sequence of 
the target had 69% identity with Mla-locus of resistance 
to powdery mildew Hordeum vulgare (GenBank A/N: 
AF427791) [29]. The used set of primers was included 
in the group of molecular labeling systems of barley 
varieties, and therefore has a certain potential of 

practical application for beer authentication, although 
the authors did not mention it [3].

Lipoxygenase-deficient barley varieties with reduced 
or lost activity of LOX genes have a positive impact on 
quality indicators such as beer taste and foam stability 
[30–33]. The set of primers constructed by Nagamine et al.  
resulted in amplification of the specific PCR product l in 
a small number of studied barley varieties and in more 
than half of beer samples, whose sequenced nucleotide 
sequences had 99% identity with the reference sequence 

Table 2 Interpreted results of PCR analysis of brewing barley varieties and beer samples

Barley varieties PCR products
a b c d–1 d–1 e f g h i–a i–b j k l m n o p s

Vlamingh + + – + + – + – – – + – + – – – – – –
Hamelin + + – + + + + – + + + – + – – – – + –
Stimling – + – – + + + – – + – – – – – – – – +
Bardin + + – – + + + – – + – + + – – – – + +
Salute + + + – + – + – – – + – + – – – – – +
Schouner + + – + + – + – – + – + – – – – – + –
Maritime + + – – + + + – – – + + + – – + – + +
Flag ship + + – – + – + – – + – – – – – – – + +
Metkafe + + – + + – + + + + + + – + + + – + +
Harushizuku – + + + – – + – – + – + + – – – + – –
Houshun + – + + – – + – – + – – – – + + – – –
Mikamogolden – – + + – – + – – – + + – – + – + – –
Skygolden – + + + – + + – – – + + + – + – + – –
Nishinohoshi – – + + – + + + – + – + – + + + – – +
Nishinochikara – – – + – + + – – + – + + + + – + + +
Ryofu + + + + – + + + – – + + + + + + – + +
Samples of beer PCR products

a b c d–1 d–1 e f g h i–a i–b j k l m n o p s
Czechoslovakia–a + + + n/a n/a – + n/a + + + – + + n/a n/a n/a + +
USA–a – + + n/a n/a – + n/a – + – – + + n/a n/a n/a + +
Belgium–a – + + n/a n/a – + n/a + + + – – + n/a n/a n/a – +
USA–b + + + n/a n/a – + n/a + + + + + + n/a n/a n/a – +
Netherlands–a + + + n/a n/a + + n/a – + + – + + n/a n/a n/a + +
Thailand–a + + + n/a n/a – + n/a – + + – + + n/a n/a n/a – +
Denmark–a + + + n/a n/a – + n/a – + + – + – n/a n/a n/a – +
England–a – + + n/a n/a – + n/a – + + – + + n/a n/a n/a – +
Germany–a – + + n/a n/a – + n/a – + – – + + n/a n/a n/a – +
Australia–a – + + n/a n/a – + n/a – + – – + – n/a n/a n/a + +
Mexico–a – + + n/a n/a – + n/a – + – – + + n/a n/a n/a – +
USA–c + + + n/a n/a – + n/a + + + – + + n/a n/a n/a + +
Germany–b + + + n/a n/a – + n/a + + + – + + n/a n/a n/a – +
England–b – + + n/a n/a – + n/a – + + – + + n/a n/a n/a + +
Peru–a – + + n/a n/a – + n/a – + – – + + n/a n/a n/a – +
England–c + + + n/a n/a – + n/a + + – + – – n/a n/a n/a + +
Germany–c + + + n/a n/a – + n/a + + – + – – n/a n/a n/a + –
Italy–a + + + n/a n/a – + n/a + – – + + – n/a n/a n/a + +
Japan–a + + + n/a n/a – + n/a + – – + + – n/a n/a n/a + –
Japan–b + + + n/a n/a – + n/a + + – – + – n/a n/a n/a + –
Japan–c + + + n/a n/a – + n/a – + – – + + n/a n/a n/a – +
Japan–d + + + n/a n/a – + n/a + – – – + – n/a n/a n/a + +

+ a positive amplification signal
– a negative amplification signal
n/a not applicable
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Table 3 SSR-markers of nuclear DNA Hordeum vulgare used for genetic identification of brewing barley varieties, potentially 
suitable for beer DNA authentication

No. SSR marker The sequence of oligonucleotide primers Allel lenghts, bp Number of alleles
1 Bmac 0040 F: 5/-AGCCCGATCAGATTTACG-3/ 196-226 bp

(196/200/208/214/220/226)
6

R: 5/-TTCTCCCTTTGGTCCTTG-3/

2 Bmac 0134 F: 5/-CCAACTGAGTCGATCTCG-3/ 140-174 bp
(140/144/162/168/174)

5
R: 5/-CTTCGTTGCTTCTCTACCTT-3/

3 Bmag 0125 F: 5/-AATTAGCGAGAACAAAATCAC-3/ 128-148 bp
(128/132/138/144/148)

5
R: 5/-AGATAACGATGCACCACC-3/

4 Bmag 0211 F: 5/-ATTCATCGATCTTGTATTAGTCC-3/ 150-170 bp
(150/154/162/170

4
R: 5/-ACATCATGTCGATCAAAGC-3/

5 Bmag 0222 F: 5/-ATGCTACTCTGGAGTGGAGTA-3/ 140-178 bp
(140/144/162/168/170/174/178)

7
R: 5/-GACCTTCAACTTTGCCTTATA-3/

of locus LoxA-gene Hordeum vulgare (GenBank A/N: 
L35931) [3, 34, 35]. The tested set of primers was 
recommended for further use in the amplification of the 
analysed gene locus for barley varieties identification 
and beer brands differentiation. It should also be noted 
that the authors [3] additionally revealed a positive 
correlation between the amplified DNA target and beer 
taste saturation (Table 1).

The selection of barley varieties with genetic 
resistance to viral, bacterial and fungal diseases is 
aimed at high-quality grain production [36]. A number 
of DNA markers of resistance of barley to yellow mosaic 
virus (rym5-locus) and powdery mildew (mlo-locus) [34] 
integrated into breeding programs can also be used in 
molecular labelling of brewing barley varieties, which 
is clearly demonstrated in the work [3]. The authors 
interpreted the PCR analysis data of barley samples 
taking into account the presence or absence of specific 
PCR products m (rym), n and o (mlo) recorded on the 
corresponding electrophoregrams. But the results of the 
PCR analysis of beer samples and their correlation with 
quality indicators were not provided [3].

Protein inhibitors of proteolytic enzymes play 
an important role both in formation of homeostatic 
reactions in plants and in the process of seed maturation 
and germination. Selected primers to the trypsin 
inhibitor (Itr1) gene locus led to the amplification 
of the specific PCR product p in half of the tested 
barley varieties and beer samples [37]. Thus, the DNA 
marker was concluded to be highly informative [3]. 
Additionally, the DNA sequences of the Itr1-gene locus 
of the material had 94% identity with the same locus 
of the Hordeum vulgare subsp. vulgare gene (GenBank 
A/N: (X65875) [38]. Also, in the study [3] a negative 
correlation of the detected DNA matrix with beer taste 
saturation was revealed (Table 1).

The content (1–3, 1–4) of β-D-glucan in barley grain, 
which determines its hardness, is much higher compared 
to other cereals [39]. However, for barley varieties used 
in brewing, a lower the content of this polysaccharide in 
the grain is desirable in order to achieve a more effective 
flow of the malting process [40]. The amplification 
procedure of the locus of the HvCslF6 gene with a 
selected primer pair led to the production of a specific 

PCR product s in a number of American, Australian 
and Japanese brewing barley varieties [3, 40]. The most 
of the beer samples also gave a positive amplification 
signal (Table 2). The obtained amino acid sequence 
of the target had 83% identity with Hordeum vulgare 
CslF6-gene (GenBank A/N: EU267181) [41]. The used 
primer set was also included in the group of systems 
of barley varieties molecular labelling and beer DNA-
authentication [3].

Microsatellites are widely used molecular markers 
which are suitable for identification of Hordeum vulgare. 
A wide variety of SSR-markers are being used [42–44].  
Tomka et al. described a high potential of the five SSR- 
markers for brewing barley varieties identification [45]. 

Table 3 shows the sequence of oligonucleotide 
primers of the corresponding Hordeum vulgare SSR-
markers of nuclear DNA, as well as the range of lengths 
of detected alleles and their number. The genetic 
identification procedure includes PCR method with 
subsequent data interpretation by horizontal or vertical 
gel electrophoresis and DNA fragmentary analysis 
of capillary gel electrophoresis. The SSR-markers, 
potentially suitable for beer DNA authentication, are 
advisable to test in the formulation of single PCR, with 
a set of primers of a single SSR-marker to achieve a 
reproducible result.

Alongside with SSR-markers, SNP-markers, used for 
barley varieties identification, including brewing ones, 
also have high identification capacity [46–48].

Table 4 shows oligonucleotide primers sequences 
of the corresponding SNP markers of Hordeum 
vulgare nuclear DNA, as well as the size of amplified 
loci of discriminated alleles [46]. The procedure of 
gene identification is carried out by the Amplification 
Refractory Mutation System (ARSM-PCR), followed by 
data  interpretation by horizontal gel electrophoresis or 
by high resolution melting curves (HRM) analysis on 
PCR platforms in real time. It should be mentioned that 
we selected five SNP-markers (out of nine described by 
Chiapparino et al. [46] as potentially suitable for beer 
DNA authentication due to generation of relatively small 
allele-specific PCR products, whose size was not more 
than 200 bp (Table 4).
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Table 5 Genetic targets used in detecting brewing barley substitutes and identifying hops and yeast in beer 

Target PCR product Primer sequence Correlation (+/–) Source
GBSS (rice) t F: 5/-GGATGAAGGCCGGAATCCTG

R: 5/-CTTGCCCGGATACTTCTCCT
missing [3, 49]

Β-conglycinin u F: 5/-TTTGGCATTGCTTACTGGGAAAAAGAG
R: 5/-TCTGTAGGAGTCTCTGTCGTCGTTG

missing [3, 50]

Zein v F: 5/-CACATGTGTAAAGGTGAAGCGAT
R: 5/-GCTCGCCGCAAGCGCTTGTTG

missing [3, 49]

Hop-a w F: 5/-GGAACCGTTGCCTAATCCTAAGATT
R: 5/-GTGTTTTCCGTATCTACGCGCTGGG

missing [3]

Hop-b x F: 5/-AATTAGGGCATGCCATGAATATT
R: 5/-TGGCATAGTTAAATTATTTCG

–*
–**

[3]

Hop-c y F: 5/-AAATAAAACTTTACATGTGATA
R: 5/-CTGAATTGTCGGCGT

missing [3]

Yeast-a
(S. cerevisiae)

z-a F: 5/-GTTTTGCGCTCATTAAAACCTAGTGGGAG
R: 5/-GTCATTTTTTTTAGTGGTGCTAATC

+***
–****

[3]

Yeast-b (thioredoxin) z-b F: 5/-ATGGTCACTCAATTAAAATCCGCTTCT
R: 5/-CTATACGTTGGAAGCAATAGCTTGCTTG

missing [3]

–* a negative correlation of the amplified PCR product t of the corresponding locus of the hop gene (Hop-b) with beer bitterness 
–** a negative correlation of the amplified PCR product t of the corresponding hop gene locus (Hop-b) with beer astringency 
+*** a positive correlation of the amplified PCR product z-a of the corresponding yeast gene locus with beer acidity 
–*** a negative correlation of the amplified PCR product z-a of corresponding locus of the S. cerevisiae gene yeast with beer umami 
N/A is not applicable

The detection of brewing barley substitutes in 
beer, which is often used as a cheap source of starch, 
makes it possible to evaluate the products sold for 
qualitative, quantitative, information and complex 
falsification. Table 5 demonstrates primer sequences 
targeting genetic targets used in the detection of 
brewing barley substitutes in beer, such as granule-
bound starch synthase of rice, β-conglycinin of soya, 

and zein of maize [49, 50]. Nevertheless, other PCR 
systems developed for the identification of cereals 
in food products can also be suitable for beer DNA 
authentication [51].

The effect of hops and yeast on beer quality is 
well-known. Thus, hop has a bactericidal effect on 
beer as well as provides its bitterness, aroma and foam  
stability [52]. Yeast is used in beer fermentation and 

Table 4 SSR-markers of Hordeum vulgare nuclear DNA used for brewing barley varieties identification, potentially suitable for 
beer DNA authentication

No. Locus (position) The sequence of oligonucleotide primers PCR product, bp
1 MWG2062

(325 A-G)
FOP: 5/-GTTGTGTCAAGCATATCGGTTGCTCTT-3/

ROP: 5/-CAGCACGTTCGAAAACAATAGGATCC-3/
198 bp

FIP: 5/-AAGAATTATGCCAATTATTGGCGTGTCA-3/ 101 bp (A allele)
RIP: 5/-CACACTGCATGTCATCAAACAAGCAC-3/ 151 bp (G allele)

2 ABC465
(254 C-T)

FOP: 5/-CAGGTACACCTGGAAGCTCTACTCAGAG-3/

ROP: 5/-CAGCAGCCTGAATTCAACAAAACATAC-3/
236 bp

FIP: 5/-TGGAGATGTTCTACGCTCTCAAGTACAGT-3/ 130 bp (T allele)
RIP: 5/-CTGTTGGTCAGATAACCTACCAGGATG-3/ 162 bp (C allele)

3 MWG2218
(175 G-C)

FOP: 5/-CTCTCCGACATCGACCGCTTCCTCTTCG-3/

ROP: 5/-GCCGCATCATCCCTGGTGTCATCACCT-3/
215 bp

FIP: 5/-GGGGACGTCATCCACGTCTGTCGACC-3/ 127 bp (C allele)
RIP: 5/-GTTCCCGCGGTGGGCTTTGTTTCCTC-3/ 140 bp (G allele)

4 ABC156
(231 T-G)

FOP: 5/-CTTGGTCCATATAGGTCTCTCTTTTC-3/

ROP: 5/-CCTCCTGATATACTTGAGAGACTCAATA
74 bp

FIP: 5/-TCCATATAGGTCTCTCTTTTCTTATTATG-3/ 70 bp (G allele)
RIP: 5/-TGAGAGACTCAATACTCATGAATTTCA-3/ 60 bp (T allele)

5 MWG801
(344 G-A)

FOP: 5/- CAACAACCCCAATACCAGGCCAGCTCCACA-3/

ROP: 5/-AACCCTCGACTGCTCAAGGCAGAGCCGC-3/
256 bp

FIP: 5/-GAAGCATGCTCGCACGACACCCATCC-3/ 175 bp (C allele)
RIP: 5/-CGGCAGCGGAGGGGAAGGGGAGCAGT-3/ 133 bp (A allele)

FOP is a forward outer primer; ROP is a reverse outer primer; FIP is a forward inner primer; and RIP is a reverse inner primer
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impacts its character and taste [53]. Table 5 also 
presents sets of primers which initiate the amplification 
of specific PCR products of the corresponding loci of 
hops and yeast genes. They also allow the identifying 
or differentiating of commercial beer samples [3]. 
In addition, a negative correlation of the amplified 
PCR product t of the corresponding locus of the hop 
gene (Hop-b) with beer bitterness and astringency 
was revealed. The amplified PCR product z-a of the 
corresponding locus of the yeast gene S. cerevisiae 
showed a positive correlation with beer acidity and 
a negative correlation with beer umami [3]. Taking 
into account the rapid development of genomic and 
bioinformation technologies, metagenomic analysis, 
which allows determining yeast species diversity in 
beer samples without microorganisms allocating and 
cultivating, is one of the promising approaches to beer 
DNA authentication [54, 55]. 

CONCLUSION
Analysis of scientific and methodical approaches to 

extraction of residual quantities of nucleic acids of beer 

raw materials and beer DNA-authentication indicates 
the applicability of molecular and genetic analysis in 
detecting counterfeit and falsified brewery products. 
The use of DNA technologies helps determine the 
authenticity and origin of the brewery industry products. 
Molecular labelling systems suitable for identification of 
Hordeum vulgare barley malt, or its substitutes, as well 
as hops and yeast, can ensure traceability of the product 
life cycle. Systematic data on correlation of amplified 
DNA targets with beer quality indicators can be of 
practical importance when choosing raw materials for 
brewery production. 
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