УДК 542.98 https://doi.org/10.21603/-I-IC-71 БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ И ФРАКЦИОННЫЙ СОСТАВ УГОЛЬНО-ПОРОДНЫХ ПЫЛЕВЫХ ЧАСТИЦ

А.В. Ларионов*, Т.В. Лешуков*, О.С. Яковенко* * Кемеровский государственный университет, г. Кемерово, Россия

Аннотация

Цель: раздельно оценить фракционный состав пылевых частиц (PM-particle matter) микро- (от 10 мкм до 100 нм, PM10) и нанофракции (менее 100 нм, PM0,1), а также их биологический эффект методом ДНК-комет на культуре легочных фибробластов MRC-5. Наибольшее распространение имели частицы 1,1-1,3 мкм и 50-80 нм в микро- и нанофракции соответственно. Высокий уровень повреждений ДНК отмечен в образцах экспонированных PM0,1 в сравнении с PM10.

Ключевые слова: пылевые частицы, угольно-породные частицы, РМ10, РМ0,1, ДНК-кометы, ПЭМ, MRC-5.

Твердые частицы, переносимые воздухом (particle matter – PM), представляют неоднородную фракцию объектов разной формы, размеров и плотности. Важнейшей характеристикой PM является аэродинамический размер, который определяет дальность переноса от объекта выделения и способность проникать в дыхательные пути. Частицы размером менее 10 мкм (PM10) проникают в верхние дыхательные пути, а частицы менее 2,5 мкм (PM2,5) в бронхи и альвеолы. Это может сопровождаться цито- и генотоксическими реакциями [1] в ткани легких и транспортом токсических компонентов к альвеолярной стенке [2].

Интенсивная генерация и распространение РМ сопровождает не только добычу угля, но и его транспортировку и сжигание. Например, перевозка угля генерирует до 80% общего выброса пыли в некоторых случаях [3]. Сложный рельеф регионов с развитой горнодобывающей промышленностью часто вынуждает к расположению жилой застройки в непосредственной близости от предприятий и путей транспортировки. Распространение пыли при этом может значительно меняться в разные сезоны года. Отмечено увеличение частоты цитогенетических аномалий у обследованных, проживающих вблизи мест добычи и перевозки угля [4]. Можно предположить значительные различия в составе РМ, которыми экспонируются шахтеры, непосредственно задействованные в добыче угля и частицы преобладающие на некотором отдалении от источника, либо вблизи путей транспортировки угля. Собственно угольные частицы могут быть крупнее 10 мкм и не относиться к вдыхаемой фракции, вызывающих биологический участвовать ответ или в переносе органических \неорганических загрязнителей.

Материалы и методы.

Пробы частиц были собраны в конце периода накопления снега (март 2020 г.). Сбор проводился на территории Кемеровской области (Западная Сибирь, Россия), на расстоянии 1,5-2 км от угольного разреза в 5 точках с последовательно увеличивающейся удаленностью от объекта. Из образцов талой воды с помощью фильтрования на нейлоновых фильтрах и вакуумного испарения были получены образцы пылевых частицы размером менее 100 нм (PM0,1) и от 100 нм до 10 мкм (PM10). Эти частицы использовались для экспонирования клеточных культур фибробластов легкого человека MRC-5, фракционный состав рассчитывался по результатам электронной (для PM0,1) и световой (PM10) микроскопии.

Для получения препаратов для световой микроскопии суспензию пылевых частиц наносили на предметные стекла, подсчет частиц проводили с помощью светового микроскопа Альтами ЛЮМ 1. Изображения нанообъектов фракции РМ0,1 получали методом электронной просвечивающей микроскопии (ПЭМ) на микроскопе JEOL JEM-2100 в режиме съемки

«светлопольное изображение» при энергии пучка 200кэВ. Площадь, периметр, длина, ширина и эллиптичность частиц измерялись с помощью программы JMicroVision v 1.3.3.

Для экспонирования использовали эмбриональные диплоидные фибробласты легкого человека MRC-5 (25 пассаж), клетки культивировались в монослое на среде Игла-МЕМ (89%) с раствором неосновных аминокислот (1%), эмбриональной телячьей сывороткой (10%) и пенициллин-стрептомицином. Для проведения экспонирования клетки культивировали 24 ч, затем нагружали РМ, после чего культивировали еще в течение 6 ч. Далее после смены среды клетки оставляли на 48 часов. Для экспонирования готовили суспензии РМ 0,1 и РМ 10 с концентрацией 0,25, 0,5 и 1 мг/мл с использованием стерильного 0,9% раствора NaCl. Каждый эксперимент независимо повторяли 3 раза, Одновременно с образцами РМ использовали отрицательный контроль («К-» – аналогичный объем среды), контроль разведения («К(Р)» – 0,9% раствора NaCl) и положительный контроль («К+» – наночастицы Al₂O₃ в концентрации 1 мг/мл).

В полученных суспензиях клеток проводили гель-электрофорез отдельных клеток (метод ДНК-комет) в щелочной модификации по [5] с небольшими изменениями. 30 мкл клеточной суспензии смешивали со 100 мкл 1% легкоплавкой агарозы при 39С. 50 мкл смеси помещали на предметное стекло с предварительно нанесенным слоем стандартной агарозы и закрывали покровным стеклом. После 5 минут на льду, покровное стекло удаляли и препарат помещали в лизирующий буфер (2,5M NaCl, 100 мM Na₂EDTA, 10 мM Tris base, 1% Triton X-100, 10% DMSO, pH 10) при + 4 °C на 16 часов. Далее препараты помещали в щелочной буфер, pH 13 на 20 мин, затем электрофорез в течение 20 мин при 25В. Препараты отмывали 2х фосфатно-солевым буфером и однократно 70% этанолом, окрашивали SYBR Green и микроскопировали с помощью флуоресцентного микроскопа Альтами ЛЮМ 1. Учитывалось по 100 комет с трех препаратов для каждого образца. С помощью пакета CASP Lab рассчитывали показатели интенсивность хвоста кометы (% ДНК в хвосте), момент хвоста и момент по Оливе [6].

Были рассчитаны средние, стандартная ошибка и 95% доверительные интервалы. Анализ данных проводили с использованием непараметрического U-рангового критерия Манна-Уитни. Чтобы избежать эффект множественных сравнений, была применена поправка FDR (False Discovery Rate) [7].

Результаты и их обсуждение.

Средний уровень накопления PM составил 103,46 мкг/см2 для PM10 и 163,20 мкг/см2 для PM0,1. При удалении от объекта увеличивалась доля наноразмерной фракции. Установлено превышение пылевых частиц размерами от 0,1 до 1 мкм во всех пяти точках исследования. В точках 2 и 5 увеличение доли частиц с размерами 0,1–1 мкм. В точке 3 зафиксировано увеличение доли частиц в диапазоне 1–2,5 мкм и уменьшение фракции PM 0,1–1. PM размером 0,06 - 0,1 мкм были обнаружены во всех пунктах наблюдения. Также были зафиксированы и более мелкие частицы, представляющие большую опасность для человека. Например, для точки 4 было установлено, что PM0,05 составляет 52,38 % от PM 0,1 (табл. 1). Частицы менее 100 нм характеризуются высокой изменчивостью состава. Известно, что размер частиц обратно пропорционален степени опасности для человека [8].

Параметры мкм	частиц,	Точки (от 1 до 5 по удалению от объекта)				
		1	2	3	4	5
PM10		1,38	1,18	1,35	1,36	1,05
PM0,1		0,055	0,079	0,067	0,052	0,07

Таблица 1. Средний размер пылевых частиц в микро- (РМ10) и нанофракции (РМ0,1).

Для экспонирования клеток использовали образцы частиц собранных на точке №1, анализ распределения указывает на, то, что эти образцы вполне репрезентативно представляют общее распределение пылевых частиц по всем точкам сбора. Показатели фрагментации ДНК пропорциональны концентрации пылевых частиц (рис. 1).

Рисунок 1. Показатели фрагментации ДНК в образцах клеток, экспонированных образцами РМ0,1 и РМ 10.

Примечание: указана фракция РМ10 или РМ0,1 и концентрация 1,0,5 или 0,25 мг/мл.

Высокое значение фрагментации ДНК отмечено в образцах экспонированных РМ0,1 в сравнении с образцами РМ10 (p<0,001 для парных сравнений образцов РМ10 и РМ0,1 одинаковых концентраций). Увеличение концентрации РМ также приводило к росту фрагментации ДНК, все 3 показателя в образцах РМ с концентрацией 1мг/мл превышают образцы 0,5 мг/мл и 0,25 мг/мл (p<0,01).

"Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта No 19-05-50114".

Список литературы

1. Aneja,V.P. et al. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis // Journal of the Air & Waste Management Association. 2017. Vol. 67, N 4. P. 421–430.

2. Espitia-Pérez, L. et al. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels // Ecotoxicology and Environmental Safety. 2018. Vol. 148. P. 453–466.

3. Furuyama, A. et al. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes // Arch Toxicol. 2009. Vol. 83, N_{2} 5. P. 429–437.

4. Ghose, M.K., Majee, S.R. Characteristics of Hazardous Airborne Dust Around an Indian Surface Coal Mining Area // Environ Monit Assess. 2007. Vol. 130, № 1–3. P. 17–25.

5. OECD. Test No. 489: In Vivo Mammalian Alkaline Comet Assay. OECD, 2016.

6. Singh, N.P. et al. A simple technique for quantitation of low levels of DNA damage in individual cells // Experimental Cell Research. 1988. Vol. 175, № 1. P. 184–191.

7. Benjamini, Y., Yekutieli, D. The control of the false discovery rate in multiple testing under dependency // Ann. Statist. 2001. Vol. 29, N_{2} 4.

8. Kwon, H.-S., Ryu, M.H., Carlsten, C. Ultrafine particles: unique physicochemical properties relevant to health and disease // Exp Mol Med. 2020. Vol. 52, № 3. P. 318–328.

BIOLOGICAL EFFECTS AND FRACTIONAL COMPOSITION OF COAL-ROCK PARTICLE MATTER

A.V. Larionov*, T.V. Leshukov*, O.S. Yakovenko* * Kemerovo State University, 6 Krasnaya Street, Kemerovo 650000, Russian Federation

Abstract

Aim: to evaluate separately the fractional composition of dust particles (PM – particle matter) micro- (from 10 μ m to 100 nm, PM10) and nanofractions (less than 100 nm, PM0.1), as well as their biological effect by the DNA comet method on a culture of lung fibroblasts MRC-5. The most abundant were 1.1-1.3 μ m and 50-80 nm particles in micro- and nanofractions, respectively. A high level of DNA disease is found in samples exposed to PM0.1 in searches with PM10.

Keywords: dust particles, coal-rock particles, PM10, PM0.1, DNA comets, TEM, MRC-5.

References

1. Aneja, V.P. et al. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis // Journal of the Air & Waste Management Association. 2017. Vol. 67, N_{2} 4. P. 421–430.

2. Espitia-Pérez, L. et al. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels // Ecotoxicology and Environmental Safety. 2018. Vol. 148. P. 453–466.

3. Furuyama, A. et al. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes // Arch Toxicol. 2009. Vol. 83, № 5. P. 429–437.

4. Ghose, M.K., Majee, S.R. Characteristics of Hazardous Airborne Dust Around an Indian Surface Coal Mining Area // Environ Monit Assess. 2007. Vol. 130, № 1–3. P. 17–25.

5. OECD. Test No. 489: In Vivo Mammalian Alkaline Comet Assay. OECD, 2016.

6. Singh, N.P. et al. A simple technique for quantitation of low levels of DNA damage in individual cells // Experimental Cell Research. 1988. Vol. 175, № 1. P. 184–191.

7. Benjamini, Y., Yekutieli, D. The control of the false discovery rate in multiple testing under dependency // Ann. Statist. 2001. Vol. 29, N_{2} 4.

8. Kwon, H.-S., Ryu, M.H., Carlsten, C. Ultrafine particles: unique physicochemical properties relevant to health and disease // Exp Mol Med. 2020. Vol. 52, № 3. P. 318–328.